本文主要是介绍Spark算子:RDD键值转换操作(1)–partitionBy、mapValues、flatMapValues,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
partitionBy
def partitionBy(partitioner: Partitioner): RDD[(K, V)]该函数根据partitioner函数生成新的ShuffleRDD,将原RDD重新分区。
scala> var rdd1 = sc.makeRDD(Array((1,"A"),(2,"B"),(3,"C"),(4,"D")),2)
rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[23] at makeRDD at :21scala> rdd1.partitions.size
res20: Int = 2//查看rdd1中每个分区的元素
scala> rdd1.mapPartitionsWithIndex{| (partIdx,iter) => {| var part_map = scala.collection.mutable.Map[String,List[(Int,String)]]()| while(iter.hasNext){| var part_name = "part_" + partIdx;| var elem = iter.next()| if(part_map.contains(part_name)) {| var elems = part_map(part_name)| elems ::= elem| part_map(part_name) = elems| } else {| part_map(part_name) = List[(Int,String)]{elem}| }| }| part_map.iterator| | }| }.collect
res22: Array[(String, List[(Int, String)])] = Array((part_0,List((2,B), (1,A))), (part_1,List((4,D), (3,C))))
//(2,B),(1,A)在part_0中,(4,D),(3,C)在part_1中//使用partitionBy重分区
scala> var rdd2 = rdd1.partitionBy(new org.apache.spark.HashPartitioner(2))
rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[25] at partitionBy at :23scala> rdd2.partitions.size
res23: Int = 2//查看rdd2中每个分区的元素
scala> rdd2.mapPartitionsWithIndex{| (partIdx,iter) => {| var part_map = scala.collection.mutable.Map[String,List[(Int,String)]]()| while(iter.hasNext){| var part_name = "part_" + partIdx;| var elem = iter.next()| if(part_map.contains(part_name)) {| var elems = part_map(part_name)| elems ::= elem| part_map(part_name) = elems| } else {| part_map(part_name) = List[(Int,String)]{elem}| }| }| part_map.iterator| }| }.collect
res24: Array[(String, List[(Int, String)])] = Array((part_0,List((4,D), (2,B))), (part_1,List((3,C), (1,A))))
//(4,D),(2,B)在part_0中,(3,C),(1,A)在part_1中
mapValues
def mapValues[U](f: (V) => U): RDD[(K, U)]同基本转换操作中的map,只不过mapValues是针对[K,V]中的V值进行map操作。
scala> var rdd1 = sc.makeRDD(Array((1,"A"),(2,"B"),(3,"C"),(4,"D")),2)
rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[27] at makeRDD at :21scala> rdd1.mapValues(x => x + "_").collect
res26: Array[(Int, String)] = Array((1,A_), (2,B_), (3,C_), (4,D_))
flatMapValues
def flatMapValues[U](f: (V) => TraversableOnce[U]): RDD[(K, U)]同基本转换操作中的flatMap,只不过flatMapValues是针对[K,V]中的V值进行flatMap操作。
scala> rdd1.flatMapValues(x => x + "_").collect
res36: Array[(Int, Char)] = Array((1,A), (1,_), (2,B), (2,_), (3,C), (3,_), (4,D), (4,_))
转载请注明: Spark算子:RDD键值转换操作(1)–partitionBy、mapValues、flatMapValues
这篇关于Spark算子:RDD键值转换操作(1)–partitionBy、mapValues、flatMapValues的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!