计算质数通过分区(Partition)提高Spark的运行性能

2024-06-23 13:08

本文主要是介绍计算质数通过分区(Partition)提高Spark的运行性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Sortable公司,很多数据处理的工作都是使用Spark完成的。在使用Spark的过程中他们发现了一个能够提高Spark job性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何做到的。

查找质数
  比如我们需要从2到2000000之间寻找所有的质数。我们很自然地会想到先找到所有的非质数,剩下的所有数字就是我们要找的质数。
  我们首先遍历2到2000000之间的每个数,然后找到这些数的所有小于或等于2000000的倍数,在计算的结果中可能会有许多重复的数据(比如6同时是2和3的倍数)但是这并没有啥影响。

我们在Spark shell中计算:
Welcome to____              __/ __/__  ___ _____/ /___\ \/ _ \/ _ `/ __/  '_//___/ .__/\_,_/_/ /_/\_\   version 1.6.1/_/Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
SQL context available as sqlContext.scala> val n = 2000000
n: Int = 2000000scala> val composite = sc.parallelize(2 to n, 8).map(x => (x, (2 to (n / x)))).flatMap(kv => kv._2.map(_ * kv._1))
composite: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at flatMap at <console>:29scala> scala> val prime = sc.parallelize(2 to n, 8).subtract(composite)
prime: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[7] at subtract at <console>:31scala> prime.collect()
res0: Array[Int] = Array(563249, 17, 281609, 840761, 1126513, 1958993, 840713, 1959017, 41, 281641, 1681513, 1126441, 73, 1126457, 89, 840817, 97, 1408009, 113, 137, 1408241, 563377, 1126649, 281737, 281777, 840841, 1408217, 1681649, 281761, 1408201, 1959161, 1408177, 840929, 563449, 1126561, 193, 1126577, 1126537, 1959073, 563417, 233, 281849, 1126553, 563401, 281833, 241, 563489, 281, 281857, 257, 1959241, 313, 841081, 337, 1408289, 563561, 281921, 353, 1681721, 409, 281993, 401, 1126897, 282001, 1126889, 1959361, 1681873, 563593, 433, 841097, 1959401, 1408417, 1959313, 1681817, 457, 841193, 449, 563657, 282089, 282097, 1408409, 1408601, 1959521, 1682017, 841241, 1408577, 569, 1408633, 521, 841273, 1127033, 841289,617, 1408529, 1959457, 563777, 841297, 1959473, 577, 593, 563809, 601,...

  答案看起来是可靠的,但是我们来看看这个程序的性能。如果我们到Spark UI里面看的话可以发现Spark在整个计算过程中使用了3个stages,下图就是UI中这个计算过程的DAG(Directed Acyclic Graph)可视化图,其中展示了DAG图中不同的RDD计算。

在Spark中,只要job需要在分区之间进行数据交互,那么一个新的stage将会产生(如果使用Spark术语的话,分区之间的数据交互其实就是shuffle)。Spark stage中每个分区将会起一个task进行计算,而这些task负责将这个RDD分区的数据转化(transform)成另外一个RDD分区的数据。我们简单地看下Stage 0的task运行情况:

上图中我们对Duration和Shuffle Write Size / Records两列非常感兴趣。sc.parallelize(2 to n, 8)已经生成了1999999 records,而这写记录均匀地分布到8个分区里面;每个task的计算几乎花费了相同的时间,所以这个stage是没问题的。

  Stage 1是比较重要的stage,因为它运行了map和flatMap transformation,我们来看看它的运行情况:


从上图可以看出,这个stage运行的并不好,因为工作负载并没有均衡到所有的task中!93%的数据集中在一个task中,而这个task的计算花费了14s;另外一个比较慢的task花费了1s。然而我们提供了8个core用于计算,而其中的7个core在这13s内都在等待这个stage的完成。这对资源的利用非常不高效。

为什么会出现这种情况?

  当我们运行  sc.parallelize(2 to n, 8)  语句的时候,Spark使用分区机制将数据很好地分成8个组。它最有可能使用的是range partitioner,也就是说2-250000被分到第一个分区; 250001-500000分到第二个分区等等。然而我们的map函数将这些数转成(key,value)pairs,而value里面的数据大小变化很大(key比较小的时候,value的值就比较多,从而也比较大)。每个value都是一个list,里面存放着我们需要乘上key并小于2000000的倍数值,有一半以上的键值对(所有key大于1000000)的value是空的;而key等于2对应的value是最多的,包含了所有从2到1000000的数据!这就是为什么第一个分区拥有几乎所有的数据,它的计算花费了最多的时间;而最后四个分区几乎没有数据!


如何解决

  我们可以将数据重新分区。通过对RDD调用.repartition(numPartitions)函数将会使Spark触发shuffle并且将数据分布到我们指定的分区数中,所以让我们尝试将这个加入到我们的代码中。

  我们除了在.map和.flatMap函数之间加上.repartition(8)之外,其他的代码并不改变。我们的RDD现在同样拥有8个分区,但是现在的数据将会在这些分区重新分布,修改后的代码如下:

val composite = sc.parallelize(2 to n, 8).map(x => (x, (2 to (n / x)))).repartition(8).flatMap(kv => kv._2.map(_ * kv._1))

新的DAG可视化图看起来比之前更加复杂,因为repartition操作会有shuffle操作,所有增加了一个stage。

Stage 0和之前一样,新的 Stage 1看起来和 Stage 0也很类似,每个task大约都处理250000条记录,并且花费1s的时间。 Stage 2是比较重要的stage,下面是其截图:

从上图可以看出,现在的Stage 2比之前旧的Stage 1性能要好很多,这次Stage我们处理的数据和之前旧的Stage 1同样多,但是这次每个task花费的时候大概为5s,而且每个core得到了高效地使用。

  两个版本的代码最后一个Stage大概都运行了6s,所以第一个版本的代码运行了大约0.5 + 14 + 6 = ~21s;而对数据进行重新分布之后,这次运行的时间大约为0.5 + 1 + 5 + 6 = ~13s。虽然说修改后的代码需要做一些额外的计算(重新分布数据),但是这个修改却减少了总的运行时间,因为它使得我们可以更加高效地使用我们的资源。

  当然,如果你的目标是寻找质数,有比这里介绍的更加高效的算法。但是本文仅仅是用来介绍考虑Spark数据的分布是多么地重要。增加.repartition函数将会增加Spark总体的工作,但好处可以显著大于成本

本文翻译自:Improving Spark Performance With Partitioning

这篇关于计算质数通过分区(Partition)提高Spark的运行性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087244

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

在VSCode中本地运行DeepSeek的流程步骤

《在VSCode中本地运行DeepSeek的流程步骤》本文详细介绍了如何在本地VSCode中安装和配置Ollama和CodeGPT,以使用DeepSeek进行AI编码辅助,无需依赖云服务,需要的朋友可... 目录步骤 1:在 VSCode 中安装 Ollama 和 CodeGPT安装Ollama下载Olla

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录