本文主要是介绍计算质数通过分区(Partition)提高Spark的运行性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在Sortable公司,很多数据处理的工作都是使用Spark完成的。在使用Spark的过程中他们发现了一个能够提高Spark job性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何做到的。查找质数
比如我们需要从2到2000000之间寻找所有的质数。我们很自然地会想到先找到所有的非质数,剩下的所有数字就是我们要找的质数。
我们首先遍历2到2000000之间的每个数,然后找到这些数的所有小于或等于2000000的倍数,在计算的结果中可能会有许多重复的数据(比如6同时是2和3的倍数)但是这并没有啥影响。
我们在Spark shell中计算:
Welcome to____ __/ __/__ ___ _____/ /___\ \/ _ \/ _ `/ __/ '_//___/ .__/\_,_/_/ /_/\_\ version 1.6.1/_/Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
SQL context available as sqlContext.scala> val n = 2000000
n: Int = 2000000scala> val composite = sc.parallelize(2 to n, 8).map(x => (x, (2 to (n / x)))).flatMap(kv => kv._2.map(_ * kv._1))
composite: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at flatMap at <console>:29scala> scala> val prime = sc.parallelize(2 to n, 8).subtract(composite)
prime: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[7] at subtract at <console>:31scala> prime.collect()
res0: Array[Int] = Array(563249, 17, 281609, 840761, 1126513, 1958993, 840713, 1959017, 41, 281641, 1681513, 1126441, 73, 1126457, 89, 840817, 97, 1408009, 113, 137, 1408241, 563377, 1126649, 281737, 281777, 840841, 1408217, 1681649, 281761, 1408201, 1959161, 1408177, 840929, 563449, 1126561, 193, 1126577, 1126537, 1959073, 563417, 233, 281849, 1126553, 563401, 281833, 241, 563489, 281, 281857, 257, 1959241, 313, 841081, 337, 1408289, 563561, 281921, 353, 1681721, 409, 281993, 401, 1126897, 282001, 1126889, 1959361, 1681873, 563593, 433, 841097, 1959401, 1408417, 1959313, 1681817, 457, 841193, 449, 563657, 282089, 282097, 1408409, 1408601, 1959521, 1682017, 841241, 1408577, 569, 1408633, 521, 841273, 1127033, 841289,617, 1408529, 1959457, 563777, 841297, 1959473, 577, 593, 563809, 601,...
答案看起来是可靠的,但是我们来看看这个程序的性能。如果我们到Spark UI里面看的话可以发现Spark在整个计算过程中使用了3个stages,下图就是UI中这个计算过程的DAG(Directed Acyclic Graph)可视化图,其中展示了DAG图中不同的RDD计算。
上图中我们对Duration和Shuffle Write Size / Records两列非常感兴趣。sc.parallelize(2 to n, 8)已经生成了1999999 records,而这写记录均匀地分布到8个分区里面;每个task的计算几乎花费了相同的时间,所以这个stage是没问题的。
Stage 1是比较重要的stage,因为它运行了map和flatMap transformation,我们来看看它的运行情况:
为什么会出现这种情况?
当我们运行 sc.parallelize(2 to n, 8) 语句的时候,Spark使用分区机制将数据很好地分成8个组。它最有可能使用的是range partitioner,也就是说2-250000被分到第一个分区; 250001-500000分到第二个分区等等。然而我们的map函数将这些数转成(key,value)pairs,而value里面的数据大小变化很大(key比较小的时候,value的值就比较多,从而也比较大)。每个value都是一个list,里面存放着我们需要乘上key并小于2000000的倍数值,有一半以上的键值对(所有key大于1000000)的value是空的;而key等于2对应的value是最多的,包含了所有从2到1000000的数据!这就是为什么第一个分区拥有几乎所有的数据,它的计算花费了最多的时间;而最后四个分区几乎没有数据!
如何解决
我们可以将数据重新分区。通过对RDD调用.repartition(numPartitions)函数将会使Spark触发shuffle并且将数据分布到我们指定的分区数中,所以让我们尝试将这个加入到我们的代码中。
我们除了在.map和.flatMap函数之间加上.repartition(8)之外,其他的代码并不改变。我们的RDD现在同样拥有8个分区,但是现在的数据将会在这些分区重新分布,修改后的代码如下:
val composite = sc.parallelize(2 to n, 8).map(x => (x, (2 to (n / x)))).repartition(8).flatMap(kv => kv._2.map(_ * kv._1))
新的DAG可视化图看起来比之前更加复杂,因为repartition操作会有shuffle操作,所有增加了一个stage。
从上图可以看出,现在的Stage 2比之前旧的Stage 1性能要好很多,这次Stage我们处理的数据和之前旧的Stage 1同样多,但是这次每个task花费的时候大概为5s,而且每个core得到了高效地使用。
两个版本的代码最后一个Stage大概都运行了6s,所以第一个版本的代码运行了大约0.5 + 14 + 6 = ~21s;而对数据进行重新分布之后,这次运行的时间大约为0.5 + 1 + 5 + 6 = ~13s。虽然说修改后的代码需要做一些额外的计算(重新分布数据),但是这个修改却减少了总的运行时间,因为它使得我们可以更加高效地使用我们的资源。
当然,如果你的目标是寻找质数,有比这里介绍的更加高效的算法。但是本文仅仅是用来介绍考虑Spark数据的分布是多么地重要。增加.repartition函数将会增加Spark总体的工作,但好处可以显著大于成本
本文翻译自:Improving Spark Performance With Partitioning
这篇关于计算质数通过分区(Partition)提高Spark的运行性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!