基于matlab的K-means聚类图像分割

2024-06-23 07:12

本文主要是介绍基于matlab的K-means聚类图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 原理

K-means聚类算法在图像分割中的应用是基于一种无监督的学习方法,它将图像中的像素点或特征区域划分为K个不同的簇或类别。以下是K-means聚类算法用于图像分割的原理,包括步骤和公式:

1.1 原理概述
  1. 选择簇的数量(K)
    • 首先,用户需要指定要将图像数据分成多少个簇(即K的值)。
  2. 初始化聚类中心
    • 随机选择K个像素点作为初始聚类中心。
  3. 分配数据点到最近的聚类中心
    • 对于图像中的每个像素点,计算其与每个聚类中心的距离(如欧氏距离),并将其分配给距离最近的聚类中心所在的簇。
  4. 更新聚类中心
    • 对于每个簇,计算该簇中所有像素点的平均值(或质心),并将这个平均值作为新的聚类中心。
  5. 重复迭代
    • 重复步骤3和步骤4,直到聚类中心不再发生显著变化或达到预定的迭代次数。
1.2 公式表示
  • 距离计算(以欧氏距离为例):

        设x_i为图像中的一个像素点(或特征向量),\mu_j为第j个聚类中心,则像素点x_i到聚类中心\mu_j的欧氏距离计算公式为:

d(x_i, \mu_j) = \sqrt{\sum_{d=1}{D} (x_i{(d)} - \mu_j{(d)})2}

其中,D是像素点或特征向量的维度。

  • 聚类中心的更新
    • 对于每个簇C_k,其新的聚类中心\mu_k'计算公式为:

\mu_k' = \frac{1}{|C_k|} \sum_{x_i \in C_k} x_i

  • 其中,|C_k|是簇C_k中像素点的数量。
1.3 步骤总结
  1. 初始化:选择K个初始聚类中心。
  2. 分配:计算每个像素点到聚类中心的距离,并将其分配给最近的聚类中心。
  3. 更新:重新计算每个簇的聚类中心。
  4. 迭代:重复步骤2和步骤3,直到聚类中心不再变化或达到预设的迭代次数。
1.4 注意事项
  • K-means算法对初始聚类中心的选择敏感,因此可能多次运行算法并选择最佳结果。
  • SSE(Sum of Squared Errors)是衡量聚类效果的一个指标,其值越小表示聚类结果越紧密。
  • 图像分割中的K-means算法通常是在图像的特征空间(如颜色空间、纹理空间等)上进行的,而不是直接在像素值上进行。这有助于提高算法的鲁棒性和效率。

2 代码

%% 基于聚类的分割 (使用K-means聚类)
figure('Position', [100 100 1200 400]);
% 读取图像并转换为双精度  
I3 = imread('test.jpg');
I3 = rgb2gray(I3);  
subplot(1,3,1);imshow(I3);
title('origin Image');
% 读取图像并转换为双精度  
I4 = imread('test.jpg'); 
I_double = im2double(I4);  
% 将图像数据重塑为二维数组,其中每一列是一个像素  
data = reshape(I_double, [], 3);  
% 使用K-means聚类  
[cluster_idx, cluster_center] = kmeans(data, 3); % 假设我们想要3个聚类  
% 将聚类结果重塑为图像大小  
segmented_image = reshape(cluster_idx, size(I4, 1), size(I4, 2));  
% 显示结果(可能需要为每个聚类分配一个颜色)  
segmented_image_colored = label2rgb(segmented_image, 'jet', 'k', 'shuffle'); subplot(1,3,2);imshow(segmented_image_colored); 
title('three colors Image using K-means Clustering');
% 读取图像并转换为灰度  
I5 = imread('test.jpg');  
I_gray = rgb2gray(I5);  
I_double = im2double(I_gray);  % 将图像数据重塑为二维数组  
data = I_double(:);  % 使用两个中心的K-means聚类  
[cluster_idx, cluster_center] = kmeans(data, 2);  % 将聚类结果重塑为图像大小  
segmented_image = reshape(cluster_idx, size(I_gray));  % 为每个聚类分配一个颜色(在这种情况下,0为黑色,1为白色)  
segmented_image_bw = ind2rgb(segmented_image, [0 0 0; 1 1 1]);  % 显示结果   
subplot(1,3,3);imshow(segmented_image_bw);  
title('Black and White Image using K-means Clustering');

3 运行结果

图1 图像分割对比图

这篇关于基于matlab的K-means聚类图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086479

相关文章

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };