smart210 linux3.0.8内核蜂鸣器pwm驱动分析

2024-06-23 05:58

本文主要是介绍smart210 linux3.0.8内核蜂鸣器pwm驱动分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

刚刚移植这个pwm驱动到linux3.7.4,发现了一些问题,所以把这个3.0.8的pwm驱动看看,友善带的pwm驱动为mini210-pwm.c,这个只是这个驱动的一部分,直接搬到3.7.4内核下不能用,让我们来好好看看这个驱动的实现吧

static int __init mini210_pwm_dev_init(void) {int ret;ret = gpio_request(BUZZER_PMW_GPIO, DEVICE_NAME);申请一个io口资源if (ret) {printk("request GPIO %d for pwm failed\n", BUZZER_PMW_GPIO);return ret;}gpio_set_value(BUZZER_PMW_GPIO, 0);设置io口的值为低电平s3c_gpio_cfgpin(BUZZER_PMW_GPIO, S3C_GPIO_OUTPUT);配置io口为输出pwm4buzzer = pwm_request(BUZZER_PWM_ID, DEVICE_NAME);这个函数为请求一个pwm资源,需要细看if (IS_ERR(pwm4buzzer)) {printk("request pwm %d for %s failed\n", BUZZER_PWM_ID, DEVICE_NAME);return -ENODEV;}pwm_stop();sema_init(&lock, 1);ret = misc_register(&mini210_misc_dev);printk(DEVICE_NAME "\tinitialized\n");return ret;
}
上面是pwm驱动的init函数,主要做的是注册了一个混杂驱动,配置了io口,申请了pwm资源,其中pwm4buzzer为struct pwm_device *类型的指针,lock为这个驱动定义的一个信号量,pwm_device为定义在arch\arm\plat-samsung\pwm.c中的一个结构体,用来描述一个pwm设备

struct pwm_device {struct list_head	 list;struct platform_device	*pdev;struct clk		*clk_div;
struct clk		*clk;const char		*label;unsigned int		 period_ns;unsigned int		 duty_ns;unsigned char		 tcon_base;unsigned char		 running;unsigned char		 use_count;unsigned char		 pwm_id;
};
驱动是怎样跟系统申请一个pwm资源的呢

struct pwm_device *pwm_request(int pwm_id, const char *label)
{struct pwm_device *pwm;int found = 0;mutex_lock(&pwm_lock);list_for_each_entry(pwm, &pwm_list, list) {遍历链表,寻找注册到系统中的pwm_deviceif (pwm->pwm_id == pwm_id) {如果系统中存在这个pwm_id号的pwm资源,found = 1;break;}}if (found) {如果成功找到系统资源,那么就再给pwm_device结构成员赋值if (pwm->use_count == 0) {pwm->use_count = 1;pwm->label = label;} elsepwm = ERR_PTR(-EBUSY);} elsepwm = ERR_PTR(-ENOENT);mutex_unlock(&pwm_lock);return pwm;成功返回一个,pwm_device结构体
}

关键问题来了,系统在哪把pwm_device添加到链表呢,

同样在上面那个pwm.c文件中,有下面这个函数,吧pwm_device这个结构的链表加入到全局链表pwm_list中

static int pwm_register(struct pwm_device *pwm)
{pwm->duty_ns = -1;pwm->period_ns = -1;mutex_lock(&pwm_lock);list_add_tail(&pwm->list, &pwm_list);mutex_unlock(&pwm_lock);return 0;
}
继续看pwm.c这个文件,这个文件也是一个驱动,是一个platform机制的模块

static int __init pwm_init(void)
{int ret;clk_scaler[0] = clk_get(NULL, "pwm-scaler0");clk_scaler[1] = clk_get(NULL, "pwm-scaler1");if (IS_ERR(clk_scaler[0]) || IS_ERR(clk_scaler[1])) {printk(KERN_ERR "%s: failed to get scaler clocks\n", __func__);return -EINVAL;}ret = platform_driver_register(&s3c_pwm_driver);if (ret)printk(KERN_ERR "%s: failed to add pwm driver\n", __func__);return ret;
}arch_initcall(pwm_init);

查看他的probe函数

static int s3c_pwm_probe(struct platform_device *pdev)
{struct device *dev = &pdev->dev;struct pwm_device *pwm;unsigned long flags;unsigned long tcon;unsigned int id = pdev->id;int ret;if (id == 4) {dev_err(dev, "TIMER4 is currently not supported\n");return -ENXIO;}pwm = kzalloc(sizeof(struct pwm_device), GFP_KERNEL);if (pwm == NULL) {dev_err(dev, "failed to allocate pwm_device\n");return -ENOMEM;}pwm->pdev = pdev;pwm->pwm_id = id;/* calculate base of control bits in TCON */pwm->tcon_base = id == 0 ? 0 : (id * 4) + 4;pwm->clk = clk_get(dev, "pwm-tin");if (IS_ERR(pwm->clk)) {dev_err(dev, "failed to get pwm tin clk\n");ret = PTR_ERR(pwm->clk);goto err_alloc;}pwm->clk_div = clk_get(dev, "pwm-tdiv");if (IS_ERR(pwm->clk_div)) {dev_err(dev, "failed to get pwm tdiv clk\n");ret = PTR_ERR(pwm->clk_div);goto err_clk_tin;}local_irq_save(flags);tcon = __raw_readl(S3C2410_TCON);tcon |= pwm_tcon_invert(pwm);__raw_writel(tcon, S3C2410_TCON);local_irq_restore(flags);ret = pwm_register(pwm);if (ret) {dev_err(dev, "failed to register pwm\n");goto err_clk_tdiv;}pwm_dbg(pwm, "config bits %02x\n",(__raw_readl(S3C2410_TCON) >> pwm->tcon_base) & 0x0f);dev_info(dev, "tin at %lu, tdiv at %lu, tin=%sclk, base %d\n",clk_get_rate(pwm->clk),clk_get_rate(pwm->clk_div),pwm_is_tdiv(pwm) ? "div" : "ext", pwm->tcon_base);platform_set_drvdata(pdev, pwm);return 0;err_clk_tdiv:clk_put(pwm->clk_div);err_clk_tin:clk_put(pwm->clk);err_alloc:kfree(pwm);return ret;
}
这个probe函数主要做的事是

1.分配pwm_device结构体内存

2初始化pwm_device,比如

pwm->pdev = pdev;
pwm->pwm_id = id;
pwm->tcon_base = id == 0 ? 0 : (id * 4) + 4;

pwm->clk = clk_get(dev, "pwm-tin");

pwm->clk_div = clk_get(dev, "pwm-tdiv");
3.操作tcon寄存器,是对应的定时器的工作模式为TOUT_x Inverter-On 模式

local_irq_save(flags);tcon = __raw_readl(S3C2410_TCON);
tcon |= pwm_tcon_invert(pwm);
__raw_writel(tcon, S3C2410_TCON);

local_irq_restore(flags);

4.注册pwm_device到系统中,这个就是我们上面说的注册到链表

由上面分析可知,要想使用pwm功能用作蜂鸣器,除了要有蜂鸣器的驱动外,在系统中还需要注册pwm_device,要想注册这个pwm_device就要先注册一个pwm类型的platform平台设备,这个设备的定义在arch\arm\plat-samsung\dev-pwm.c中

#define TIMER_RESOURCE_SIZE (1)
#define TIMER_RESOURCE(_tmr, _irq)			\(struct resource [TIMER_RESOURCE_SIZE]) {	\[0] = {					\.start	= _irq,			\.end	= _irq,			\.flags	= IORESOURCE_IRQ	\}					\}#define DEFINE_S3C_TIMER(_tmr_no, _irq)			\.name		= "s3c24xx-pwm",		\.id		= _tmr_no,			\.num_resources	= TIMER_RESOURCE_SIZE,		\.resource	= TIMER_RESOURCE(_tmr_no, _irq),	\/** since we already have an static mapping for the timer,* we do not bother setting any IO resource for the base.*/
struct platform_device s3c_device_timer[] = {[0] = { DEFINE_S3C_TIMER(0, IRQ_TIMER0) },[1] = { DEFINE_S3C_TIMER(1, IRQ_TIMER1) },[2] = { DEFINE_S3C_TIMER(2, IRQ_TIMER2) },[3] = { DEFINE_S3C_TIMER(3, IRQ_TIMER3) },[4] = { DEFINE_S3C_TIMER(4, IRQ_TIMER4) },
};
EXPORT_SYMBOL(s3c_device_timer);
在开发板的板级配置文件mach-mini210.c中有

static struct platform_device *mini210_devices[] __initdata = {

.............................................

&s3c_device_timer[0],

&s3c_device_timer[MINI210_BL_PWM],
..................................

大体上就这样了,linux3.7.4的结构好像和3.0.8的区别很大,有需要的话把3.7.4的也分析一下

这篇关于smart210 linux3.0.8内核蜂鸣器pwm驱动分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086321

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har