AUCell和AddModuleScore函数进行基因集评分

2024-06-22 17:44

本文主要是介绍AUCell和AddModuleScore函数进行基因集评分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AUCellAddModuleScore 分析是两种主流的用于单细胞RNA测序数据的基因集活性分析的方法。这些基因集可以来自文献、数据库或者根据具体研究问题进行自行定义。

AUCell分析原理:

1、AUCell分析可以将细胞中的所有基因按表达量进行排序,生成一个基因排名列表,表达量越高的基因排名越靠前。

2、接下来对每个基因集中的基因找到它们在每个细胞的基因排名列表中的位置,这些位置则反映了基因集内基因在特定细胞群中的表达情况。

3、计算基因集在每个细胞中的活性评分。基于基因集内基因的排名,通过计算这些基因排名的累计面积(AUC,Area Under the Curve)来评估基因集的活性。AUC值越大,表明该基因集在该细胞中的表达越活跃。

AddModuleScore分析原理:

1、计算每个基因集中的基因在每个细胞中的平均表达值

2、选择与目标基因集大小相似的背景基因集,通过目标基因集的平均表达值减去背景基因集的平均表达值,得到基因模块评分(这个评分代表)。这个背景基因集是有函数内部把表达矩阵自行切割若干份之后随机抽取每一份中的基因作为背景基因集。

应用场景
  • 细胞类型鉴定:识别不同细胞类型或细胞亚群的特征基因集活性。

  • 功能状态分析:分析细胞的功能状态,例如细胞周期、免疫反应等。

  • 生物学过程探索:探索特定生物学过程中基因集的表达活性。

AUCell分析步骤:

1.读取基因集数据(采用了Autophagy基因数据)

rm(list = ls())
autophagy_genes <- read.xlsx("Autophagy.xlsx",colNames = T) 
g <- autophagy_genes$Symbol
head(autophagy_genes)
#GeneId                                                                    Name Symbol
#1  55626                                          autophagy/beclin-1 regulator 1 AMBRA1
#2   8542                                                     apolipoprotein L, 1  APOL1
#3    405                          aryl hydrocarbon receptor nuclear translocator   ARNT
#4    410                                                         arylsulfatase A   ARSA
#5    411                                                         arylsulfatase B   ARSB
#6    468 activating transcription factor 4 (tax-responsive enhancer element B67)   ATF4

2.读取R包和需要分析的数据(采用了单细胞pbmc数据)

library(Seurat)
library(tidyverse)
library(openxlsx)
load("step1.final.Rdata") #pbmc数据
sce <- step1.final
#check一下
DimPlot(sce,group.by = "celltype",label = T)+ NoLegend() +ggsci::scale_color_d3()

3、AUCell分析

library(GSEABase)
geneSets <- GeneSet(g, setName="autophagy")
geneSets
#BiocManager::install("AUCell")
library(AUCell)
exprMatrix = sce@assays$RNA@data
rownames(exprMatrix) = Features(sce)
colnames(exprMatrix) = Cells(sce)
#对矩阵中的每个细胞里,给基因进行排序(可见下图1)
cells_rankings <- AUCell_buildRankings(exprMatrix,, plotStats=TRUE) 
#把每个细胞中的基因表达量从高到底排列并计算数量
#Quantiles for the number of genes detected by cell: 
#(Non-detected genes are shuffled at the end of the ranking. Keep it in mind when choosing #the threshold for calculating the AUC).
#    min      1%      5%     10%     50%    100% 
# 491.00  633.15  806.00  897.30 1323.00 5418.00 
cells_AUC <- AUCell_calcAUC(geneSets, cells_rankings,aucMaxRank = nrow(cells_rankings)*0.05)
#为了计算AUC,默认情况下只使用排名中前5%的基因(即检查基因集中的基因是否在前5%之内)。
#这样可以在更大的数据集上更快地执行,并减少排名底部噪音的影响(例如,许多基因可能表达量为0)。要考虑的百分比可以通过参数 aucMaxRank 参数进行修改。可以通过AUCell_buildRankings提供的直方图进行辅助判断。
#Genes in the gene sets NOT available in the dataset: 
# autophagy:  26 (12% of 222)
set.seed(123)
#见下图2
cells_assignment <- AUCell_exploreThresholds(cells_AUC, plotHist=TRUE, assign=TRUE) 
auc_thr = cells_assignment$HMMR$aucThr$selected 
auc_thr

不同细胞中基因表达情况呈偏态分布

这里重点提一下如何看这个AUC histogram,我这边采用autophagy基因集在pbmc数据集中进行分析发现,AUC大于0.11的细胞为活性细胞,但是pbmc中没有细胞符合要求~ 这也提示了我们在做AUCell分析前,需要仔细考虑纳入分析的基因集和单细胞数据是否”合适“。

接下来我以AUCell github上的资料为例子,这些AUC柱状图是对“自定义/活性基因集的细胞”的直观展示。开发者采用了神经细胞的数据集进行分析和展示。

1) 图片的标题是指不同的细胞亚群和基因数量,比如Astrocyte_Cahoy (526g),星形胶纸细胞,代表这群细胞在研究者纳入分析的数据集中存在的基因数量为526个。其中Random(50g), 代表研究者随机提取细胞和基因。

2) X轴代表了AUC值的大小,Y轴代表了不同AUC值下的细胞数量,图形里边的AUC值代表了阈值,AUC阈值下边的具体数值代表了达到要求的“活性”细胞数量。

3) 理想的情况图形呈双峰分布,数据集中大多数细胞是呈现较低的AUC值,而少部分细胞则呈现较高的AUC值。比如Oligodendrocyte_Cahoy分析结果。比较类似的结果是Neuron和Microglia_lavin,虽然它们的基因集细胞数量很少或者符合要求的细胞数很少,但结果仍旧呈现出了双峰形态,或许侧面说明了他们的基因集或者筛除的细胞能够明显的表征某些特性。

4) 如果基因集是数据集中的高比例细胞的标记(比如 Neuron结果),那么分布图形可能类似于管家基因的分析结果(HK-like)。

5) 基因集的大小会影响结果。更大的基因集(100-2k)可会使结果更稳定,更易评估,随着基因数目的减少,AUC = 0的细胞数目可能增加。当然如果选定的基因集非常给力,那么也可能呈现较好的结果 (即Neuron_Lein结果)。

4、图形可视化

#由于我这里使用的autophagy基因并不能很好的区分高低活性细胞,因此我更换了数据集
#数据集采用了GSE162025鼻咽癌数据集中的上皮细胞
#基因集采用了"SCNM1","CDC42SE1","ZNF687" (随意指定)
Idents(sce) <- sce$celltype
sce$auc_score = as.numeric(getAUC(cells_AUC))
sce$auc_group = ifelse(sce$auc_score>auc_thr,"high_A","low_A") #自行修改dat<- data.frame(sce@meta.data, sce@reductions$umap@cell.embeddings,seurat_annotation = sce@active.ident)
class_avg <- dat %>%group_by(seurat_annotation) %>% #按照seurat_annotation列(即细胞的分类)对数据进行分组。summarise(umap_1 = median(umap_1),umap_2 = median(umap_2) #对每个分组计算UMAP坐标的中位数 画label)library(ggpubr)
ggplot(dat, aes(umap_1, umap_2))  +geom_point(aes(colour  = auc_score)) +viridis::scale_color_viridis(option="A") +ggrepel::geom_label_repel(aes(label = seurat_annotation),data = class_avg,label.size = 0,segment.color = NA)+theme_bw()
ggsave(filename="Aucell.pdf",width = 12,height = 7)# 高低分组
ggplot(dat,aes(x = umap_1,y = umap_2))+geom_point(aes(color = auc_group),size = 0.5)+theme_classic()
ggsave(filename="Aucell2.pdf",width = 8,height = 7)

然后接下来可以根据基因集的高低分组进行更多的个性化分析啦~

AddModuleScore分析步骤:

1、读取数据和基因集

rm(list = ls())
library(Seurat)
g <- c("SCNM1","CDC42SE1","ZNF687")
load("sce_epi.Rdata")  #数据集采用了GSE162025鼻咽癌数据集中的上皮细胞
#DimPlot(sce,group.by = "celltype",label = T)+ NoLegend() +ggsci::scale_color_d3()

2、AddModuleScore分析

#AddmoduleScore函数是seraut包自带的很方便
sce =  AddModuleScore(object = sce,features = g)
colnames(sce@meta.data)
p =FeaturePlot(sce,'Cluster1') #默认名称cluster1
p dat<- data.frame(sce@meta.data, sce@reductions$umap@cell.embeddings,seurat_annotation = sce@active.ident)
class_avg <- dat %>%group_by(seurat_annotation) %>% #按照seurat_annotation列(即细胞的分类)对数据进行分组。summarise(umap_1 = median(umap_1),umap_2 = median(umap_2) #对每个分组计算UMAP坐标的中位数 画label)library(ggpubr)
ggplot(dat, aes(umap_1, umap_2))  +geom_point(aes(colour  = Cluster1)) + #修改这里的colourviridis::scale_color_viridis(option="A") +ggrepel::geom_label_repel(aes(label = seurat_annotation),data = class_avg,label.size = 0,segment.color = NA)+theme_bw()
ggsave(filename="Aucell-addmodulescore.pdf",width = 12,height = 7)

获得cluster评分之后就可以按照中位值或者其他的值进行分组,从而进行后续的个性化分析啦~

:若对内容有疑惑或者有发现明确错误的朋友,请联系后台(希望多多交流)。更多内容可关注公众号:生信方舟

- END -

这篇关于AUCell和AddModuleScore函数进行基因集评分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084980

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、