7 数据预处理-数据标准化

2024-06-22 15:18
文章标签 数据 标准化 预处理

本文主要是介绍7 数据预处理-数据标准化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据预处理-数据标准化

  • 数据预处理-数据标准化
    • 正规化 Normalization
      • 例子1 - 数据标准化
      • 例子2 - 数据标准化对机器学习成效的影响

正规化 Normalization

这个文章知识讲解了入门的数据预处理,更多的归一化方法请看:
http://blog.csdn.net/u012052268/article/details/74028952 sklearn中常用数据预处理方法

由于资料的偏差与跨度会影响机器学习的成效,因此正规化(标准化)数据可以提升机器学习的成效。首先由例子来讲解:
- 例子1 - 数据标准化
- 例子2 - 数据标准化对机器学习成效的影响

例子1 - 数据标准化

#数据预处理模块
from sklearn import preprocessing
import numpy as np#建立Array
a = np.array([[10, 2.7, 3.6],[-100, 5, -2],[120, 20, 40]], dtype=np.float64)
#数据预处理模块 有一个方法:scale 归一化数据
print(preprocessing.scale(a))
# [[ 0.         -0.85170713 -0.55138018]
#  [-1.22474487 -0.55187146 -0.852133  ]
#  [ 1.22474487  1.40357859  1.40351318]]# 或者是
print(preprocessing.minmax_scale(a,feature_range=(-1,1)))
'''
结果是:
[[ -2.77555756e-17  -1.00000000e+00  -7.33333333e-01][ -1.00000000e+00  -7.34104046e-01  -1.00000000e+00][  1.00000000e+00   1.00000000e+00   1.00000000e+00]]
'''

例子2 - 数据标准化对机器学习成效的影响

# 标准化数据模块
from sklearn import preprocessing 
import numpy as np# 将资料分割成train与test的模块
frfrom sklearn.model_selection import train_test_split# 生成适合做classification资料的模块
from sklearn.datasets.samples_generator import make_classification # Support Vector Machine中的Support Vector Classifier
from sklearn.svm import SVC # 可视化数据的模块
import matplotlib.pyplot as plt #生成具有2种属性的300笔数据
X, y = make_classification(n_samples=300, n_features=2,n_redundant=0, n_informative=2, random_state=22, n_clusters_per_class=1, scale=100)
'''
参数的含义:
n_samples:样本数。
n_features:特征总数。
n_informative:信息特征的数量。
n_redundant:冗余特征数。
n_repeated:从信息和冗余特征中随机抽取的重复特征数。
n_classes:分类问题的类(或标号)的个数。
n_clusters_per_class:每个类的群集数。
random_state:随机数生成器使用的种子。
'''#可视化数据
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()

image

标准化前的预测准确率只有0.477777777778

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = SVC()
clf.fit(X_train, y_train)
print(clf.score(X_test, y_test))
# 0.477777777778

数据标准化后

数据的单位发生了变化, X 数据也被压缩到差不多大小范围.标准化后的预测准确率提升至0.9

X = preprocessing.scale(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = SVC()
clf.fit(X_train, y_train)
print(clf.score(X_test, y_test))
# 0.9

这篇关于7 数据预处理-数据标准化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084654

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会