coursera-斯坦福-机器学习-吴恩达-第11周笔记-ORC系统

2024-06-22 15:08

本文主要是介绍coursera-斯坦福-机器学习-吴恩达-第11周笔记-ORC系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

coursera-斯坦福-机器学习-吴恩达-第11周笔记-ORC系统

  • coursera-斯坦福-机器学习-吴恩达-第11周笔记-ORC系统
    • 1图像ORC
      • 1问题描述
      • 2 滑动窗sliding windows
      • 3获取大量的图片
      • 4分析
    • 2复习 quiz

1图像ORC

1.1问题描述

在这一段介绍一种 机器学习的应用实例 照片OCR技术。 我想介绍这部分内容的原因 主要有以下三个 ,
1. 第一 我想向你展示 一个复杂的机器学习系统 是如何被组合起来的
2. 第二 我想介绍一下 机器学习流水线(machine learning pipeline)的有关概念, 以及在决定下一步做什么时, 如何分配资源。
3. 最后,通过介绍照片OCR问题 的机会来告诉你, 机器学习的诸多 有意思的想法和理念 。其中之一是如何将机器学习 应用到计算机视觉问题中, 第二是有关 人工数据合成(artificial data synthesis)的概念。

OCR技术 主要解决的问题是让计算机 读出照片中拍到的文字信息。

image

OCR pipeline的意思主要是把一个ML系统分割为几个连续的部分,如下图:

image

如果你有一个工程师的团队 在完成同样类似的任务, 那么通常你可以让 不同的人来完成 不同的模块 ,所以我可以假设 文字检测这个模块 需要大概1到5个人 ,字符分割部分 需要另外1到5个人 ,字母识别部分 还需要另外1到5个人。

在复杂的机器学习系统中 流水线的概念 已经渗透到各种应用中

1.2 滑动窗(sliding windows)

为了更好地介绍 图像的检测 ,我们从一个简单一点的例子开始, 我们先看这个探测行人的例子:

在行人检测中 你希望照一张相片 然后找出图像中 出现的行人。

image

这个问题似乎 比文字检测的问题更简单, 原因是 大部分的 行人都比较相似, 因此可以使用一个固定宽高比的 矩形来分离出你希望找到的行人。

image

我们要做的是 首先对这个图像取一小块长方形, 比如这是一个 82×36的图像块, 我们将这个图像块 ,通过我们训练得到的分类器 来确定 这个图像块中是不是有行人。 如果没问题的话&#

这篇关于coursera-斯坦福-机器学习-吴恩达-第11周笔记-ORC系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084635

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]