Google图算法引擎Pregel介绍

2024-06-22 14:38

本文主要是介绍Google图算法引擎Pregel介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献点击打开链接

【前言:有一种说法[1]是Google的程序里面80%用的是MapReduce,20%用的是Pregel。今天就来介绍一下这个Pregel。想要深入研究的同志们,可以参考最新的SIGMOD 2010 ppt[2]。】

简介

Pregel是一个用于分布式图计算的计算框架,主要用于图遍历(BFS)、最短路径(SSSP)、PageRank计算等等。共享内存的运行库有很多,但是对于google来说,一台机器早已经放不下需要计算的数据了,所以需要分布式的这样一个计算环境。没有Pregel之前,你可以选择用MapReduce来做,但是效率很低;你也可以用已有的并行图算法库Parallel BGL或者CGMgraph来做,但是这两者又没有容错。所以google就自己开发了这个新的计算框架。

(八卦一下:Pregel的名字来历很有意思。是为了纪念欧拉的七桥问题[7],七座桥就位于Pregel这条河上。)

核心概念

从高层次看,Pregel是BSP[8]模型,就是“计算”-“通信”-“同步”的模式,参看图1。

  • 输入输出为有向图
  • 分成超步
  • 以节点为中心计算,超步内每个节点执行自己的任务,执行节点的顺序不确定
  • 两个超步之间是通信阶段

图1: BSP Model

在Pregel中,以节点为中心计算。Step 0时每节点都活动着,每个节点主动“给停止投票”进入不活动状态。如果接收到消息,则激活。没有活动节点和消息时,整个算法结束。


图2: Vetex State Machine(参考2)

容错是通过检查点来做的。在每个超步开始的时候,对主从节点分别备份。

核心的概念就是这些,其他还有一些消息聚集(combiner)等优化。有兴趣可以看看Lixiang的阅读笔记[6]和Pregel Slides[2]。

类似开源实现

人人都喜欢免费。跟Pregel最像的是Hama[5],也是基于BSP,但是,开源的Hama还未成气候。笔者原来打算拿它来做些实验,结果还不能运行。

国内似乎还没有类似Pregel的计算引擎,不知道百度和淘宝这些公司有没有需求。淘宝最近9月份开源了他们的文件系统TFS[3][4],很敬仰。不知道上面的运行环境是不是在开发中。大宋的开源软件也要有自己的创新,不能老是拿老外的改改就用了。

参考资料

1. Pregel: Google’s other data-processing infrastructure, http://www.royans.net/arch/pregel-googles-other-data-processing-infrastructure/

2. Pregel: A System for Large-Scale Graph Processing, SIGMOD 2010的ppt, http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing

3. 淘宝文件系统TFS开源代码,http://code.taobao.org/project/view/366/

4.  淘宝文件系统TFS介绍,http://rdc.taobao.com/blog/cs/?p=128

5. Hama homepage, http://incubator.apache.org/hama/

6. 论文阅读笔记:Google的图模型分布式计算框架Pregel

7. Seven Bridges of Königsberg, http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

8. http://en.wikipedia.org/wiki/Bulk_synchronous_parallel




这篇关于Google图算法引擎Pregel介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084578

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}