使用Python和NLTK进行NLP分析的高级指南

2024-06-22 13:52

本文主要是介绍使用Python和NLTK进行NLP分析的高级指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本文中,将利用数据集来比较和分析自然语言。

本文涵盖的基本构建块是:

  • WordNet和同义词集
  • 相似度比较
  • 树和树岸
  • 命名实体识别

WordNet和同义词集

WordNet是NLTK中的大型词汇数据库语料库。WordNet维护与名词,动词,形容词,副词,同义词,反义词等相关的单词的认知同义词(通常称为同义词集)。

WordNet是一个非常有用的文本分析工具。根据许多许可(从开源到商业),它可用于多种语言(中文,英语,日语,俄语,西班牙语等)。第一个WordNet是由普林斯顿大学在类似MIT的许可下为英语创建的。

一个单词通常根据其含义和词性与多个同义词集相关联。每个同义词集通常提供以下属性:还有其他一些属性,您可以在中的nltk/corpus/reader/wordnet.py源文件中找到它们<your python install>/Lib/site-packages

某些代码可能有助于解决这个问题。

这个辅助函数:

def synset_info(synset):print("Name", synset.name())print("POS:", synset.pos())print("Definition:", synset.definition())print("Examples:", synset.examples())print("Lemmas:", synset.lemmas())print("Antonyms:", [lemma.antonyms() for lemma in synset.lemmas() if len(lemma.antonyms()) > 0])print("Hypernyms:", synset.hypernyms())print("Instance Hypernyms:", synset.instance_hypernyms())print("Part Holonyms:", synset.part_holonyms())print("Part Meronyms:", synset.part_meronyms())print()
synsets = wordnet.synsets('code')

如下所示

5 synsets:
Name code.n.01
POS: n
Definition: a set of rules or principles or laws (especially written ones)
Examples: []
Lemmas: [Lemma('code.n.01.code'), Lemma('code.n.01.codification')]
Antonyms: []
Hypernyms: [Synset('written_communication.n.01')]
Instance Hpernyms: []
Part Holonyms: []
Part Meronyms: []...Name code.n.03
POS: n
Definition: (computer science) the symbolic arrangement of data or instructions in a computer program or the set of such instructions
Examples: []
Lemmas: [Lemma('code.n.03.code'), Lemma('code.n.03.computer_code')]
Antonyms: []
Hypernyms: [Synset('coding_system.n.01')]
Instance Hpernyms: []
Part Holonyms: []
Part Meronyms: []...Name code.v.02
POS: v
Definition: convert ordinary language into code
Examples: ['We should encode the message for security reasons']
Lemmas: [Lemma('code.v.02.code'), Lemma('code.v.02.encipher'), Lemma('code.v.02.cipher'), Lemma('code.v.02.cypher'), Lemma('code.v.02.encrypt'), Lemma('code.v.02.inscribe'), Lemma('code.v.02.write_in_code')]
Antonyms: []
Hypernyms: [Synset('encode.v.01')]
Instance Hpernyms: []
Part Holonyms: []
Part Meronyms: []

同义词集和引理遵循可以可视化的树结构:

def hypernyms(synset):return synset.hypernyms()synsets = wordnet.synsets('soccer')
for synset in synsets:print(synset.name() + " tree:")pprint(synset.tree(rel=hypernyms))print()
code.n.01 tree:
[Synset('code.n.01'),[Synset('written_communication.n.01'),...code.n.02 tree:
[Synset('code.n.02'),[Synset('coding_system.n.01'),...code.n.03 tree:
[Synset('code.n.03'),...code.v.01 tree:
[Synset('code.v.01'),[Synset('tag.v.01'),...code.v.02 tree:
[Synset('code.v.02'),[Synset('encode.v.01'),...

WordNet不能涵盖所有单词及其信息(今天大约有170,000个英语单词,而最新版本的WordNet则大约有155,000个单词),但这是一个很好的起点。在学习了此构建基块的概念之后,如果发现它不足以满足您的需求,则可以迁移到另一个。或者,您可以构建自己的WordNet!

自己尝试

使用Python库,从开放源代码下载Wikipedia的页面,并列出所有单词的同义词集和引理。

相似度比较

相似度比较是一个标识两个文本之间相似度的构件。它在搜索引擎,聊天机器人等中具有许多应用程序。

例如,“足球”和“足球”这两个词是否相关?

syn1 = wordnet.synsets('football')
syn2 = wordnet.synsets('soccer')# A word may have multiple synsets, so need to compare each synset of word1 with synset of word2
for s1 in syn1:for s2 in syn2:print("Path similarity of: ")print(s1, '(', s1.pos(), ')', '[', s1.definition(), ']')print(s2, '(', s2.pos(), ')', '[', s2.definition(), ']')print("   is", s1.path_similarity(s2))print()
Path similarity of:
Synset('football.n.01') ( n ) [ any of various games played with a ball (round or oval) in which two teams try to kick or carry or propel the ball into each other's goal ]
Synset('soccer.n.01') ( n ) [ a football game in which two teams of 11 players try to kick or head a ball into the opponents' goal ]is 0.5Path similarity of:
Synset('football.n.02') ( n ) [ the inflated oblong ball used in playing American football ]
Synset('soccer.n.01') ( n ) [ a football game in which two teams of 11 players try to kick or head a ball into the opponents' goal ]is 0.05

单词的最高路径相似性得分是0.5,表示它们密切相关。

那么“代码”和“错误”呢?这些词在计算机科学中的相似度得分是:

Path similarity of:
Synset('code.n.01') ( n ) [ a set of rules or principles or laws (especially written ones) ]
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]is 0.1111111111111111
...
Path similarity of:
Synset('code.n.02') ( n ) [ a coding system used for transmitting messages requiring brevity or secrecy ]
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]is 0.09090909090909091
...
Path similarity of:
Synset('code.n.03') ( n ) [ (computer science) the symbolic arrangement of data or instructions in a computer program or the set of such instructions ]
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]is 0.09090909090909091

这些是最高的相似性评分,表明它们是相关的。

NLTK提供了多个相似性评分器,例如:

  • 路径相似度
  • lch_similarity
  • wup_similarity
  • res_similarity
  • jcn_similarity
  • lin_similarity

树和树岸

使用NLTK,您可以树形形式表示文本的结构,以帮助进行文本分析。

这是一个例子:

预处理并带有词性(POS)标记的简单文本:

import nltktext = "I love open source"
# Tokenize to words
words = nltk.tokenize.word_tokenize(text)
# POS tag the words
words_tagged = nltk.pos_tag(words)

您必须定义语法以将文本转换为树形结构。本示例使用基于Penn Treebank标签的简单语法。

# A simple grammar to create tree
grammar = "NP: {<JJ><NN>}"

接下来,使用语法创建树:

# Create tree
parser = nltk.RegexpParser(grammar)
tree = parser.parse(words_tagged)
pprint(tree)

这将产生:

Tree('S', [('I', 'PRP'), ('love', 'VBP'), Tree('NP', [('open', 'JJ'), ('source', 'NN')])])

您可以通过图形更好地看到它。

tree.draw()

这种结构有助于正确解释文本的含义。例如,在此文本中标识主题:

subject_tags = ["NN", "NNS", "NP", "NNP", "NNPS", "PRP", "PRP$"]
def subject(sentence_tree):for tagged_word in sentence_tree:# A crude logic for this case -  first word with these tags is considered subjectif tagged_word[1] in subject_tags:return tagged_word[0]print("Subject:", subject(tree))

它显示“ I”是主题:

Subject: I

这是适用于大型应用程序的基本文本分析构建块。例如,当用户说“从1月1日起为我的妈妈Jane预订从伦敦飞往纽约的航班”时,使用此代码块的聊天机器人可以将请求解释为:

动作:书
什么:飞行
旅行者:简
来自:伦敦
纽约
日期:1月1日(明年)

树库是指带有预标记树的语料库。开源,有条件的免费使用和商业树库可用于多种语言。英文最常用的是Penn Treebank,摘自《华尔街日报》,其子集包含在NLTK中。使用树库的一些方法:

words = nltk.corpus.treebank.words()
print(len(words), "words:")
print(words)tagged_sents = nltk.corpus.treebank.tagged_sents()
print(len(tagged_sents), "sentences:")
print(tagged_sents)
100676 words:['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', ...]3914 sentences:[[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), ...]

See tags in a sentence:

sent0 = tagged_sents[0]
pprint(sent0)
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'), ('years', 'NNS'),...

Create a grammar to convert this to a tree:

grammar = '''Subject: {<NNP><NNP>}SubjectInfo: {<CD><NNS><JJ>}Action: {<MD><VB>}Object: {<DT><NN>}Stopwords: {<IN><DT>}ObjectInfo: {<JJ><NN>}When: {<NNP><CD>}
'''
parser = nltk.RegexpParser(grammar)
tree = parser.parse(sent0)
print(tree)
(S(Subject Pierre/NNP Vinken/NNP),/,(SubjectInfo 61/CD years/NNS old/JJ),/,(Action will/MD join/VB)(Object the/DT board/NN)as/INa/DT(ObjectInfo nonexecutive/JJ director/NN)(Subject Nov./NNP)29/CD./.)

See it graphically:

tree.draw()

NLTK的内置命名实体标记器使用PENN的自动内容提取(ACE)程序,可检测常见的实体,例如组织,人员,位置,设施和GPE(地缘政治实体)。

 

这篇关于使用Python和NLTK进行NLP分析的高级指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084477

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

在React中引入Tailwind CSS的完整指南

《在React中引入TailwindCSS的完整指南》在现代前端开发中,使用UI库可以显著提高开发效率,TailwindCSS是一个功能类优先的CSS框架,本文将详细介绍如何在Reac... 目录前言一、Tailwind css 简介二、创建 React 项目使用 Create React App 创建项目

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.