45、基于深度学习的螃蟹性别分类(matlab)

2024-06-22 10:12

本文主要是介绍45、基于深度学习的螃蟹性别分类(matlab),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、基于深度学习的螃蟹性别分类原理及流程

基于深度学习的螃蟹性别分类原理是利用深度学习模型对螃蟹的图像进行训练和识别,从而实现对螃蟹性别的自动分类。整个流程可以分为数据准备、模型构建、模型训练和性别分类四个步骤。

  1. 数据准备: 首先需要收集包含螃蟹图像和对应性别标签的数据集。数据集需要包含足够多的螃蟹图像,且每张图像需要标注正确的性别标签。然后对数据集进行预处理,如图像resize、归一化等操作。

  2. 模型构建: 在Matlab上选择适合的深度学习模型,如卷积神经网络(CNN)来构建螃蟹性别分类模型。可以选择预训练的模型,并进行微调以提高模型的性能。

  3. 模型训练: 将准备好的数据集输入到深度学习模型中,对模型进行训练。可以通过迭代训练的方式不断调整模型参数,提高模型的准确性和泛化能力。在训练过程中,需要对模型进行评估和调整,以提高模型对螃蟹性别的分类准确率。

  4. 性别分类: 训练好的模型可以用于测试新的螃蟹图像,对其性别进行分类。通过将图像输入到模型中,模型将输出螃蟹为雌性或雄性的概率。根据输出结果可以得到螃蟹的性别分类结果。

需要注意的是,在实际应用中,还需要考虑数据集的质量和数量、模型的选择和调整、训练参数的设置等方面的影响,以获得准确的螃蟹性别分类结果。

2、 基于深度学习的螃蟹性别分类说明

说明

使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。

方案

构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器

考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度

现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。

根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。

通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现

 3、准备数据

1)数据说明

将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。

2)加载该数据集

[x,t] = crab_dataset;
size(x)
size(t)ans =6   200ans =2   200

4、构建神经网络分类器

1)设置随机种子来避免随机性

 代码

setdemorandstream(491218382)

 2)说明

双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。

代码

net = patternnet(10);
view(net)

视图效果

 3)开始训练

说明:样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。

代码

[net,tr] = train(net,x,t);

试图效果

 4)均方误差

说明:性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。


代码

plotperform(tr)

视图效果

5、测试分类器 

1)使用测试样本测试经过训练的神经网络

 说明:网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。

代码

testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)testIndices =列 1 至 161     2     1     1     2     1     1     1     2     1     1     1     1     2     2     1列 17 至 302     1     2     2     1     2     2     1     1     2     2     2     1     2

2) 混淆矩阵图

说明:混淆矩阵图:衡量神经网络数据拟合程度
该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。

代码

plotconfusion(testT,testY)

视图效果

3) 正确和错误分类的总体百分比

代码

[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);c =0.0333cm =16     10    13Percentage Correct Classification   : 96.666667%
Percentage Incorrect Classification : 3.333333%

4) 受试者工作特征图

说明:显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。

代码

plotroc(testT,testY)

视图效果

 6、总结

螃蟹性别分类是一个常见的生物学问题,可以通过深度学习技术实现自动化分类。在MATLAB中,可以利用深度学习工具包如Deep Learning Toolbox来构建和训练性别分类模型。

首先,需要准备一个包含大量螃蟹图像和对应性别标签的数据集。然后,可以利用MATLAB中的图像数据存储和预处理功能,将图像数据加载和准备好用于模型训练。接下来,可以构建一个深度学习模型,如卷积神经网络(CNN),用于学习图像特征和进行性别分类。

在模型构建之后,需要将数据集划分为训练集和测试集,并利用MATLAB中的深度学习工具包进行模型训练和评估。可以使用预训练模型进行迁移学习,也可以自己从头开始训练模型。通过调整模型结构和超参数,可以优化性能并提高性别分类准确率。

最后,可以利用训练好的深度学习模型对新的螃蟹图像进行性别分类。通过将图像输入模型并获取预测结果,可以快速准确地识别螃蟹的性别。整个过程中,MATLAB的深度学习工具包提供了强大的功能和便捷的编程接口,帮助用户轻松实现螃蟹性别分类任务。

7、源代码

代码

%% 基于深度学习的螃蟹性别分类
%说明:使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。
%方案:构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器。考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度。现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
%六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。
%通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现
%% 准备数据
%说明:将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
%输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
%目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。
%加载该数据集
[x,t] = crab_dataset;
size(x)
size(t)
%% 构建神经网络分类器
%设置随机种子来避免随机性。
setdemorandstream(491218382)
%双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
%尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。
net = patternnet(10);
view(net)
%开始训练。样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。
[net,tr] = train(net,x,t);
%性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。
%绘图会显示训练集、验证集和测试集的性能。
plotperform(tr)
%% 测试分类器
%使用测试样本测试经过训练的神经网络。
%网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。
testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)
%混淆矩阵图:衡量神经网络数据拟合程度
%该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。
plotconfusion(testT,testY)
%正确和错误分类的总体百分比
[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);
%受试者工作特征图
%显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
%线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。
plotroc(testT,testY)

这篇关于45、基于深度学习的螃蟹性别分类(matlab)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083993

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep