R语言数据分析案例32-针对芬兰污染指数的分析与考察

本文主要是介绍R语言数据分析案例32-针对芬兰污染指数的分析与考察,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 研究背景及意义

近年来,随着我国科技和经济高速发展,人们生活质量也随之显著提高。但是, 环境污染问题也日趋严重,给人们的生活质量和社会生产的各个方面都造成了许多不 利的影响。空气污染作为环境污染主要方面,更是严重危害着人们身体健康,为有效地改善人们生活环境,开展大气污染防治工作刻不容缓。目前,空气质量的监测技术日渐完善,自2012年之后全国大部分城市都已先后建成了联网的空气质量监测站点,监测目标也由原来的三项污染物增加到现在的六项污染物,全覆盖的监测网络已 基本形成,也为大气环境污染防治措施有效制定提供了数据基础。目前,对于空气质 量状况的研究多集中在监测、影响因素研究和预测等方面,尤其是开展大气环境空气 质量预测研究具有重要现实意义。

二、研究现状

关于空气质量指数的影响因素,直观上是空气中六种污染物浓度。但是空气污染 是一个复杂的现象,污染物浓度的变化会受到许多因素的影响。一方面是污染物排放 影响,如车辆尾气排放,工业生产中废气排放,垃圾焚烧和居民取暖等。另一方面受 当地地形地貌、人口发展密度及气象条件等影响。相关因素对空气质量影响强度的评估也有许多方法,最常见的有图表相关分析,协方差及协方差矩阵,相关系数及互信 息数等等。

空气质量预测方法有单一模型预测和混合模型预测两种分类,单一模型预测方法 包括线性预测和非线性预测等。主要有自回归模型、移动平均模型和自回归移动平 均模型等。非线性预测方法有模糊逻辑法、空间相关法、人工神经网络等,其中模糊 逻辑法利用大量历史数据和专家经验建立模型逼近非线性动态变化,但该方法学习能 力弱,预测精度不够。空间相关法运用几个监测点历史数据的相关性建立模型进行预测。。。。

三、理论方法

对于时间序列数据,可以拟合多种模型,根据不同的时间序列数据可以拟合不同的模型,以下主要介绍ARIMA模型。对于非平稳序列,一般要进行差分运算,差分运算具有强大的确定性信息提取能力,经过差分运算后的序列会显示出平稳序列的性质,这时称这个非平稳序列称为差分平稳序列。对差分平稳序列可以使用ARIMA模型进行拟合。具有以下结构的模型称为ARIMA模型(自回归移动平均模型),简称为ARIMAp,d,q)模型。。。。

四、实证分析

本文所运用到的数据来源于全球暖化数据集中世界主要国家空气污染指数表(年)的数据,本文主要是针对芬兰的空气污染指数进行分析和预测,在处理数据时,将特征进行了筛选,最终选择了氮氧化物、PM2.5PM10等特征,原始数据展示如下:

数据和代码

报告代码和数据

首先,读取数据,查看数据属性:

从图三可以看出,对数据进行了描述性统计,其中氮氧化物的最小值为53.01,最大值为130.93PM2.5的最小值为55.82,最大值为175.44PM10指数的最小值为58.25,最大值为175.44。接下来分别画出三个指标的条形图,如下:

###画出柱状图
###氮氧化物
KQWR_Emi<-KQWR_data$EmiIndex_2000
KQWR_Emi
barplot(KQWR_Emi,xlab="年份",ylab="排放指数",col="pink",main="氮氧化物排放指数",border="blue")###PM2.5
PM2.5<-KQWR_data$PM2.5
PM2.5
barplot(PM2.5,xlab="年份",ylab="排放指数",col="red",main="PM2.5排放指数",border="green")

 

从上面三个指标的条形图可以看出,氮氧化物、PM2.5以及PM10随着时间的变化但是在逐步下降,这也归功于世界各地的节能减排措施的执行,虽然PM2.5PM10在后几年有小幅的上升但是总体趋势还是逐渐下降的。随后画出氮氧化物的时序图,如下: 

从上面的氮氧化物排放指数时序图可以看出,仅氮氧化物这一单单指标的趋势是大幅下降的,从1990年的125下降到2017年的60以下。在可视化之后,随后进行模型的构建,但是在构建模型之前,还需要对序列数据进行纯随机性检验,具体结果如下:

#白噪声检验
for(i in 1:3) print(Box.test(TS_KQWR_Emi,type = "Ljung-Box",lag=6*i))###非白噪声,可建模#绘制自相关图和偏自相关图
par(mfrow=c(1,2))
acf(TS_KQWR_Emi,lag=12)
pacf(TS_KQWR_Emi,lag=12)

 

从以上结果可以看出,无论是6阶、12阶还是18阶的P值均很小很小,故我们有理由在5%的显著性水平下,拒接原假设。。。

首先画出该序列的自相关和偏自相关图:

随后进行ADF检验具体准确的查看其平稳程度

随后进行定阶处理下面进行自动定阶的函数,计算得到模型应该采用ARIMA(0,1,1),拟合得到模型系数:

# 差分后的自相关和偏自相关图
par(mfrow=c(1,2))
acf(diff.TS_KQWR_Emi,main='差分后acf',lag.max = 12)
pacf(diff.TS_KQWR_Emi,main='差分后pacf',lag.max = 12)###自动定阶
auto.arima(TS_KQWR_Emi)###模型拟合
TS_KQWR_Emi.fit<-auto.arima(TS_KQWR_Emi)
TS_KQWR_Emi.fit 

在模型定阶和拟合之后,继续模型选择:

随后查看序列的正态分布情况

 下面进行模型的残差检验:

###残差检验
Box.test(TS_KQWR_Emi.fit $residuals,type = "Ljung-Box")

从残差结果显示,P值为0.8188,显然大于0.05,故在显著性水平5%下,没有理由拒绝原假设。。。。接下来进行最终的预测,本文预测h=5,表明预测5年芬兰的空气污染指数(氮氧化物)的污染指数,具体结果如下:


#模型预测
per_TS_KQWR_Emi<-forecast(TS_KQWR_Emi.fit ,h=5)
per_TS_KQWR_Emi
plot(per_TS_KQWR_Emi)

无论是从上面的具体结果还是可视化图像,都可以看出,其预测的结果随着时间的变化是逐渐下降的,最终在2022年氮氧化物的污染指数为38.577 

五、结论

本文对数据进行了预处理以及相关分析。首先,对数据进行了数据指标的整合处理,保证模型可以更好地对数据进行学习。其次,对原始数据进行可视化并分析其趋势,随后在建模前进行相应的检验工作,最终进行建模分析,发现RIMA模型对于单一序列的线性拟合效果较好。。。。。

参考文献

  1. 杨宁,李双金,王明毅,冀德刚.基于ARIMA模型的PM_(10)的预测与分析[J].农业灾害研究,2015,5(07):34-35+39.DOI:10.19383/j.cnki.nyzhyj.2015.07.015.
  2. 饶运章,徐水太,熊灵燕.基于ARIMA模型的矿区重金属污染时间序列预测[J].金属矿山,2010(06):142-146.

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

这篇关于R语言数据分析案例32-针对芬兰污染指数的分析与考察的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083960

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实