本文主要是介绍TensorFlow Saver类 保存模型与恢复模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
因工程需求,今天想找一下Saver类如何保存部分参数或者是恢复部分参数,一直没找到有效的帖子,所以自己来总结性的写一个吧
常规的保存与恢复如下:
saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) 定义一个Saver对象 (max_to_keep指我们总共保存多少个模型)
saver.save(sess, 'model/model.ckpt', global_step=step)(step是指当前训练到哪一步了,只是为了区分名字,会组装到ckpt文件名里去)
每次保留都会生成三个文件,data文件是权重文件,index是一个索引文件,meta文件保留的图的结构
恢复图结构:
saver=tf.train.import_meta_graph('model.ckpt-1000.meta')(图结构就进入了sess了)
保留部分参数
v1 = tf.Variable(1. , name="v1")
v2 = tf.Variable(2. , name="v2")
a = tf.add(v1, v2)
saver = tf.train.Saver("v1":v1,"v2": v2})
saver.save(sess, 'model/model.ckpt', global_step=step)
恢复部分参数
saver = tf.train.Saver({"v1": u1, "v2": u2})
with tf.Session() as sess: saver.restore(sess, "./Model/model.ckpt")
把model.ckpt中u1 u2的值分别赋给v1 v2,以便在新模型中使用,恢复部分参数更多是使用下面的一个方法
扩展原始模型
graph = tf.train.import_meta_graph(dir + '/vgg/results/vgg-16.meta')
graph = tf.get_default_graph()
output_conv =vgg_graph.get_tensor_by_name('conv1_2:0')
output_conv_sg = tf.stop_gradient(output_conv) #从此处进行截断,进行后续新的处理
# Build further operations
output_conv_shape = output_conv_sg.get_shape().as_list()
W1=tf.get_variable('W1',shape[1,1,output_conv_shape[3],32],initializer=tf.random_normal_initializer(stddev=1e-1))
z1 = tf.nn.conv2d(output_conv_sg, W1, strides=[1, 1, 1, 1], padding='SAME')
a = tf.nn.relu(z1)
这样就可以在别人训练好的模型的基础上采用一部分底层的东西运用到自己的模型上,因为像一个训练好的模型最开始的几层提取的都是边边角角的信息,在别的同样的自然场景下还是可以用这几层已经训练好的权重,会更快的收敛,加快训练速度
这篇关于TensorFlow Saver类 保存模型与恢复模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!