openh264 宏块级码率控制源码分析

2024-06-22 03:12

本文主要是介绍openh264 宏块级码率控制源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

openh264 宏块级码率控制函数关系

在这里插入图片描述

宏块级核心函数分析

WelsRcMbInitGom函数

  1. 功能:openh264 码率控制框架中宏块级码率控制函数,根据是否启用GOM QP来决定如何设置宏块的QP值,以控制编码的质量和比特率。
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pCurMb: 指向当前宏块的指针,宏块是视频编码的基本单位。
    • pSlice: 指向当前切片的指针,切片是一系列连续宏块的集合。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • pCurLayer: 指向当前解码质量层的指针。
    • kuiChromaQpIndexOffset: 色度QP索引偏移量,用于调整色度通道的量化参数。
  • 主要逻辑:
    • 首先,获取当前宏块的比特流位置,并更新到切片覆盖码率控制结构中。
    • 如果全局优化码率控制(GOM QP)被启用:
      • 如果当前宏块是GOM的起始宏块(即其索引能被GOM的数量整除),并且不是切片的起始宏块,则增加复杂度指数。
      • 调用RcCalculateGomQp函数计算GOM的QP值。
      • 调用RcGomTargetBits函数计算GOM的目标比特数。
      • 调用RcCalculateMbQp函数计算当前宏块的QP值。
    • 如果GOM QP未启用:
      • 将当前宏块的亮度QP值设置为全局QP值。
      • 根据亮度QP值和色度QP索引偏移量,计算并设置色度QP值。
  • 关键功能:
    • 函数通过判断是否启用GOM QP来决定如何设置宏块的量化参数(QP),这影响编码后视频的质量和比特率。
    • 使用CLIP3_QP_0_51宏来确保QP值在有效范围内(0到51)。
  1. 源码
void WelsRcMbInitGom (sWelsEncCtx* pEncCtx, SMB* pCurMb, SSlice* pSlice) {SWelsSvcRc* pWelsSvcRc        = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc          = &pSlice->sSlicingOverRc;SDqLayer* pCurLayer           = pEncCtx->pCurDqLayer;const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset;pSOverRc->iBsPosSlice = pEncCtx->pFuncList->pfGetBsPosition (pSlice);if (pWelsSvcRc->bEnableGomQp) {//calculate gom qp and target bits at the beginning of gomif (0 == (pCurMb->iMbXY % pWelsSvcRc->iNumberMbGom)) {if (pCurMb->iMbXY != pSOverRc->iStartMbSlice) {pSOverRc->iComplexityIndexSlice++;RcCalculateGomQp (pEncCtx, pSlice, pCurMb);}RcGomTargetBits (pEncCtx, pSlice);}RcCalculateMbQp (pEncCtx, pSlice, pCurMb);} else {pCurMb->uiLumaQp   = pEncCtx->iGlobalQp;pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (pCurMb->uiLumaQp + kuiChromaQpIndexOffset)];}}

RcCalculateGomQp函数

  1. 功能:计算宏块组的量化参数 qp 的具体实现
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pSlice: 指向当前切片的指针。
    • pCurMb: 指向当前宏块的指针,虽然在这段代码中没有直接使用。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • iBitsRatio: 用于计算比特率比例的变量。
  • 主要逻辑:
    • 计算剩余的比特数 iLeftBits,即目标比特数减去已使用的比特数。
    • 计算目标剩余比特数 iTargetLeftBits,考虑了当前GOM的已用比特数。
  • QP调整逻辑:
    • 如果剩余比特数小于或等于0,增加QP以降低质量,减少比特率的使用。
    • 否则,根据比特率比例 iBitsRatio 来调整QP:
      • 如果 iBitsRatio 小于 8409,增加QP 2。
      • 如果 iBitsRatio 在 8409 和 9439 之间,增加QP 1。
      • 如果 iBitsRatio 大于 10600,减少QP 1。
      • 如果 iBitsRatio 大于 11900,减少QP 2。
  • QP值的边界限制:
    • 使用 WELS_CLIP3 宏来确保计算出的QP值在允许的最小值和最大值之间。
  • 重置GOM比特计数器:
    • 将 iGomBitsSlice 重置为0,为下一个GOM的比特计数做准备。
  • 注释:
    • 注释中提到了一个可能的日志记录语句,但在这段代码中被注释掉了。
  • 设计目的:
    • 函数的目的是根据当前的编码比特率情况动态调整量化参数,以控制视频的质量和编码效率。
  • 关键功能:
    • 函数通过计算剩余比特数与目标比特数的比例,动态调整QP值,实现码率控制。
  1. 源码
void RcCalculateGomQp (sWelsEncCtx* pEncCtx, SSlice* pSlice, SMB* pCurMb) {SWelsSvcRc* pWelsSvcRc    = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc      = &pSlice->sSlicingOverRc;int64_t iBitsRatio        = 1;int64_t iLeftBits         = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;int64_t iTargetLeftBits   = iLeftBits + pSOverRc->iGomBitsSlice - pSOverRc->iGomTargetBits;if ((iLeftBits <= 0) || (iTargetLeftBits <= 0)) {pSOverRc->iCalculatedQpSlice += 2;} else {
//globe decisioniBitsRatio = 10000 * iLeftBits / (iTargetLeftBits + 1);if (iBitsRatio < 8409)              //2^(-1.5/6)*10000pSOverRc->iCalculatedQpSlice += 2;else if (iBitsRatio < 9439)         //2^(-0.5/6)*10000pSOverRc->iCalculatedQpSlice += 1;else if (iBitsRatio > 10600)        //2^(0.5/6)*10000pSOverRc->iCalculatedQpSlice -= 1;else if (iBitsRatio > 11900)        //2^(1.5/6)*10000pSOverRc->iCalculatedQpSlice -= 2;}pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice, pWelsSvcRc->iMinFrameQp,pWelsSvcRc->iMaxFrameQp);
// WelsLog (& (pEncCtx->sLogCtx), WELS_LOG_DEBUG,"iCalculatedQpSlice =%d,iBitsRatio = %d\n",pSOverRc->iCalculatedQpSlice,iBitsRatio);pSOverRc->iGomBitsSlice = 0;}

RcGomTargetBits函数

  1. 功能:在视频编码过程中为一个组(Group of Macroblocks,GOM)分配目标比特数。
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pSlice: 指向当前切片的指针。
  • 局部变量:
    • pWelsSvcRc: 指向当前依赖层的码率控制服务结构体的指针。
    • pWelsSvcRc_Base: 指向基础码率控制服务结构体的指针,可能用于比较或计算。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • iAllocateBits: 用于存储分配给当前GOM的比特数。
    • iSumSad: 用于累加GOM的总SAD(Sum of Absolute Differences)值。
    • iLastGomIndex: 表示最后一个GOM的索引。
    • iLeftBits: 表示剩余的比特数。
    • kiComplexityIndex: 表示当前GOM的复杂度指数。
  • 主要逻辑:
    • 计算最后一个GOM的索引 iLastGomIndex。
    • 计算剩余的比特数 iLeftBits。
    • 如果剩余比特数小于或等于0,将GOM的目标比特数设置为0并返回。
    • 如果当前复杂度指数等于最后一个GOM的索引,将所有剩余比特数分配给当前GOM。
    • 否则,计算从当前复杂度指数到最后一个GOM的SAD总和 iSumSad。
    • 根据SAD值按比例分配剩余比特数。
  • 比特分配策略:
    • 如果 iSumSad 为0,等比例分配剩余比特数。
    • 如果 iSumSad 不为0,根据当前GOM的SAD值占总SAD的比例来分配比特数。
  • 辅助函数:
    • RcJudgeBaseUsability: 用于判断基础码率控制服务结构体的可用性,其返回值可能用于计算。
  • 设计目的:
    • 函数的目的是根据宏块的复杂度和剩余的比特资源,动态地为每个GOM分配目标比特数,以优化视频质量和编码效率。
  • 关键功能:
    • 函数通过计算SAD值来评估宏块的复杂度,并据此分配比特数,实现码率控制。
  1. 源码
void RcGomTargetBits (sWelsEncCtx* pEncCtx, SSlice* pSlice) {SWelsSvcRc* pWelsSvcRc        = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SWelsSvcRc* pWelsSvcRc_Base   = NULL;SRCSlicing* pSOverRc          = &pSlice->sSlicingOverRc;int32_t iAllocateBits = 0;int32_t iSumSad = 0;int32_t iLastGomIndex = 0;int32_t iLeftBits = 0;const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice;int32_t i;iLastGomIndex  = pSOverRc->iEndMbSlice / pWelsSvcRc->iNumberMbGom;iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;if (iLeftBits <= 0) {pSOverRc->iGomTargetBits = 0;return;} else if (kiComplexityIndex >= iLastGomIndex) {iAllocateBits = iLeftBits;} else {pWelsSvcRc_Base = RcJudgeBaseUsability (pEncCtx);pWelsSvcRc_Base = (pWelsSvcRc_Base) ? pWelsSvcRc_Base : pWelsSvcRc;for (i = kiComplexityIndex + 1; i <= iLastGomIndex; i++) {iSumSad += pWelsSvcRc_Base->pCurrentFrameGomSad[i];}if (0 == iSumSad)iAllocateBits = WELS_DIV_ROUND (iLeftBits, (iLastGomIndex - kiComplexityIndex));elseiAllocateBits = WELS_DIV_ROUND ((int64_t)iLeftBits * pWelsSvcRc_Base->pCurrentFrameGomSad[kiComplexityIndex + 1],iSumSad);}pSOverRc->iGomTargetBits = iAllocateBits;
}

RcCalculateMbQp函数

  1. 功能:作用是在视频编码过程中为当前宏块(Macroblock, MB)计算量化参数(Quantization Parameter, QP)
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pSlice: 指向当前切片的指针。
    • pCurMb: 指向当前宏块的指针。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • iLumaQp: 存储计算得到的亮度QP值。
    • pCurLayer: 指向当前解码质量层的指针。
    • kuiChromaQpIndexOffset: 色度QP索引偏移量。
  • 主要逻辑:
    • 从切片覆盖码率控制结构中获取iCalculatedQpSlice计算得到的亮度QP值 iLumaQp。
    • 如果启用了自适应量化(bEnableAdaptiveQuant),则根据宏块的运动和纹理信息调整QP值。
  • 自适应量化:
    • 如果启用自适应量化,使用 pMotionTextureIndexToDeltaQp 数组,根据宏块的位置 MbXY 来获取QP调整值,并将其加到基础QP值iLumaQp上。
    • 调整后的QP值通过 WELS_CLIP3 宏确保在允许的范围内。
  • 色度QP计算:
    • 使用色度QP表 g_kuiChromaQpTable 和色度QP索引偏移量 kuiChromaQpIndexOffset 来计算色度QP值。
    • 色度QP值通过 CLIP3_QP_0_51 宏确保在0到51的范围内。
  • 宏块QP赋值:
    • 将计算得到的亮度QP和色度QP值赋给当前宏块 pCurMb。
  1. 源码
void RcCalculateMbQp (sWelsEncCtx* pEncCtx, SSlice* pSlice, SMB* pCurMb) {SWelsSvcRc* pWelsSvcRc        = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc          = &pSlice->sSlicingOverRc;int32_t iLumaQp               = pSOverRc->iCalculatedQpSlice;SDqLayer* pCurLayer           = pEncCtx->pCurDqLayer;const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset;if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {iLumaQp   = (int8_t)WELS_CLIP3 (iLumaQp +pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], pWelsSvcRc->iMinFrameQp,pWelsSvcRc->iMaxFrameQp);}pCurMb->uiChromaQp    = g_kuiChromaQpTable[CLIP3_QP_0_51 (iLumaQp + kuiChromaQpIndexOffset)];pCurMb->uiLumaQp      = iLumaQp;
}

WelsRcMbInfoUpdateGom函数

  1. 功能:通过收集和更新宏块的编码信息来帮助编码器动态调整编码参数,以优化视频质量和编码效率。
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pCurMb: 指向当前宏块的指针。
    • iCostLuma: 当前宏块的亮度成本,用于码率控制。
    • pSlice: 指向当前切片的指针。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • kiComplexityIndex: 复杂度指数,用于码率控制策略。
  • 主要逻辑:
    • 计算当前宏块的比特数iCurMbBits,即从切片开始到当前宏块的比特流位置差。
    • 更新切片的总比特数iFrameBitsSlice和GOM(Group of Macroblocks)的总比特数iGomBitsSlice。
  • 码率控制相关操作:
    • 累加当前宏块的亮度成本iCostLuma到对应复杂度指数的成本数组pGomCost中。
    • 如果当前宏块的比特数大于0,更新切片的总QP(量化参数)和宏块计数器。
  • 设计目的:
    • 该函数的目的是在编码过程中收集和更新宏块的相关信息,以便进行有效的码率控制。
  • 关键功能:
    • 函数通过更新宏块的比特数和亮度成本,为后续的码率控制决策提供数据支持。
  1. 源码
void WelsRcMbInfoUpdateGom (sWelsEncCtx* pEncCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) {SWelsSvcRc* pWelsSvcRc            = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc              = &pSlice->sSlicingOverRc;const int32_t kiComplexityIndex   = pSOverRc->iComplexityIndexSlice;int32_t iCurMbBits = pEncCtx->pFuncList->pfGetBsPosition (pSlice) - pSOverRc->iBsPosSlice;pSOverRc->iFrameBitsSlice += iCurMbBits;pSOverRc->iGomBitsSlice += iCurMbBits;pWelsSvcRc->pGomCost[kiComplexityIndex] += iCostLuma;if (iCurMbBits > 0) {pSOverRc->iTotalQpSlice += pCurMb->uiLumaQp;pSOverRc->iTotalMbSlice++;}
}

这篇关于openh264 宏块级码率控制源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083126

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Python实现局域网远程控制电脑

《Python实现局域网远程控制电脑》这篇文章主要为大家详细介绍了如何利用Python编写一个工具,可以实现远程控制局域网电脑关机,重启,注销等功能,感兴趣的小伙伴可以参考一下... 目录1.简介2. 运行效果3. 1.0版本相关源码服务端server.py客户端client.py4. 2.0版本相关源码1