Ollama部署大模型并安装WebUi

2024-06-22 02:36

本文主要是介绍Ollama部署大模型并安装WebUi,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型

安装

Linux 

curl -fsSL https://ollama.com/install.sh | sh

 我是ubuntu系统安装,其他系统可以看项目的开源地址有写

GitHub - ollama/ollama: Get up and running with Llama 3, Mistral, Gemma, and other large language models.

docker安装

一键脚本

#!/bin/bash
#################################################################################
# 功能:自动部署Ollama(Docker方式,GPU) 
# 说明:如果已安装了Docker,请注释掉 install_docker,避免重复安装                                                                 
#################################################################################info(){echo -e "\033[34m 【`date '+%Y-%m-%d %H:%M:%S'`】\033[0m" "\033[35m$1\033[0m "
}install_docker(){
#!/bin/bash
info "安装依赖..."
yum -y install gcc
yum -y install gcc-c++##验证gcc版本
gcc -vinfo "安装Docker(指定版本:23.0.6)"
wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O/etc/yum.repos.d/docker-ce.repo
##更新yum软件包索引
yum makecache fast## 安装docker ce cli
# 查看可安装版本:yum list docker-ce --showduplicates | sort -r
yum -y install docker-ce-23.0.6-1.el7 docker-ce-cli-23.0.6-1.el7info "启动Docker并验证"
systemctl enable docker && systemctl start docker
docker version## 创建加速器
#cd /etc/docker
#if [ ! -f "$daemon.json" ]; then
#  touch "$daemon.json"
#else
#  rm -rf daemon.json
#  touch "$daemon.json"
#fi
#tee /etc/docker/daemon.json <<-'EOF'
#{
#	"registry-mirrors": ["https://自己的镜像加速器地址"]
#}
#EOF
#systemctl daemon-reload
#systemctl restart dockerinfo "Docker(23.0.6)安装完毕!"
}# 安装 Ollama
install_Ollama(){info "参考IP地址:"$(hostname -I)read -p "请问,您当前服务器的内网IP地址是?:" inner_ipinner_ip="${inner_ip:-127.0.0.1}"curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.reposudo yum install -y nvidia-container-toolkitsudo nvidia-ctk runtime configure --runtime=dockersudo systemctl restart dockerdocker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always ollama/ollamainfo "ollama部署完毕,开始下载qwen:0.5b模型..."docker exec -it ollama ollama run qwen:0.5b “你好”info "qwen:0.5b模型加载完成,开始部署webui界面..."docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=http://${inner_ip}:11434 -v open-webui:/app/backend/data --name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:maineip=$(curl ifconfig.me/ip)info "部署完毕,正在启动WEBUI界面,大约5分钟后,请访问:http://${eip}:3000"
}install_docker
install_Ollama

上面是一键安装脚本

下载模型

ollama run llama3:70b

这个命令的意思是下载一个llama3的70b模型

模型库

Ollama 支持在 ollama.com/library 上获取的模型列表

以下是一些可下载的示例模型:

ModelParametersSizeDownload
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Mistral7B4.1GBollama run mistral
Dolphin Phi2.7B1.6GBollama run dolphin-phi
Phi-22.7B1.7GBollama run phi
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
Llama 2 13B13B7.3GBollama run llama2:13b
Llama 2 70B70B39GBollama run llama2:70b
Orca Mini3B1.9GBollama run orca-mini
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Solar10.7B6.1GBollama run solar

注意:运行 7B 模型至少需要 8 GB 的 RAM,运行 13B 模型需要 16 GB,运行 33B 模型需要 32 GB。

模型存储位置
了解模型存储位置对于管理和备份模型至关重要。默认情况下,模型存储在以下位置:

Linux:/var/lib/ollama/models
Windows:C:\ProgramData\Ollama\models
macOS:/Library/Application Support/Ollama/models

查看模型 

ollama list

 这个命令可以看已经下载的模型

chen@chen:~$ ollama list
NAME            	ID          	SIZE  	MODIFIED     
medllama2:latest	a53737ec0c72	3.8 GB	24 hours ago	

更改模型下载路径

先创建一个用于存放模型目录

sudo mkdir /path/to/ollama/models

修改权限

sudo chown -R root:root /path/to/ollama/models
sudo chmod -R 775 /path/to/ollama/models

添加环境变量

sudo vim /etc/systemd/system/ollama.service

[Service]下面加入一行新的Environment,新一行!

Environment="OLLAMA_MODELS=/path/to/ollama/models"

 请替换上面的路径为自己服务器内的路径

安装WebUI

我是基于docker部署的,比较方便

docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=http://${inner_ip}:11434 -v open-webui:/app/backend/data --name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:main

${inner_ip} 请替换为你自己服务器的ip

webui部署完成之后可能出现无法连接到ollama的情况,这是因为ollama默认绑定的ip是127.0.0.1

在ollama.service文件的[Service]下面再加入一行新的Environment,新一行!

Environment="OLLAMA_HOST=0.0.0.0:11434"

重启服务即可

这篇关于Ollama部署大模型并安装WebUi的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083049

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术