深度学习调参笔记

2024-06-21 23:04
文章标签 学习 笔记 深度 调参

本文主要是介绍深度学习调参笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

就是因为增加了下面这个代码片段,使得训练过程耗时增加了3倍。。。

def set_seed(seed):random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)cudnn.benchmark = Falsecudnn.deterministic = True# Set the seed
set_seed(42)  # 这里的 42 是一个示例,你可以选择任何整数

注释掉这段代码导致训练时间缩短了2/3的主要原因与cudnn.benchmarkcudnn.deterministic这两个选项有关。

cudnn.benchmarkcudnn.deterministic 的作用

  1. cudnn.benchmark:

    • cudnn.benchmark 设置为 True 时,CuDNN 会基于每个卷积层的配置(卷积大小、输入尺寸、显存可用性等)选择最快的卷积算法。这会带来初始的额外开销,因为 CuDNN 需要测试不同的算法以选择最快的那个。然而,一旦选定算法,后续的训练会因此而加速。
    • cudnn.benchmark 设置为 False 时,CuDNN 使用一个确定的默认算法,这减少了选择算法的时间,但可能不是最优的卷积计算速度。
  2. cudnn.deterministic:

    • cudnn.deterministic 设置为 True 时,会强制 CuDNN 使用确定性的算法(即使这些算法不是最快的),以确保每次运行的结果是可重复的。这对于需要结果复现的实验很重要,但可能会导致性能下降,因为一些非确定性的算法可能会更快。

分析

注释掉这段代码意味着:

  • cudnn.benchmark 的值不再被设置为 False,默认值是 True。这使得 CuDNN 可以自由选择最快的卷积算法,虽然这会在初始阶段带来额外的开销,但在长期的训练过程中整体上会加快计算速度。
  • cudnn.deterministic 的值不再被设置为 True,默认值是 False。这允许 CuDNN 使用非确定性但更快速的算法,从而提高训练速度。

结论

由于你注释掉了设置种子的代码,导致了cudnn.benchmarkcudnn.deterministic恢复默认值,CuDNN得以使用更快的非确定性算法,进而加快了训练过程。这解释了为什么你的训练时间缩短了2/3。

如果你不需要严格的结果复现,可以保留这种设置以提高训练速度。如果结果复现对于你的实验非常重要,你可能需要在提高速度和保证结果一致性之间做出权衡。

调整超参数是深度学习中提升模型性能和训练效率的重要步骤。以下是一些超参数调整的经验法则和它们之间的相互影响关系:

number_workers设置得更大一些通常可以加速训练。

1. 学习率(Learning Rate)

  • 主要影响:学习率是最重要的超参数之一,它决定了每次参数更新的步长。学习率过高会导致训练过程不稳定,甚至不收敛;学习率过低则会导致训练过程缓慢。
  • 调整策略
    • 可以从一个较大的值开始,然后逐渐减小。
    • 学习率调度器(Scheduler)可以帮助动态调整学习率,如学习率逐步衰减(Step Decay)、余弦退火(Cosine Annealing)等。

2. 批量大小(Batch Size)

  • 主要影响:批量大小影响模型参数的更新频率和梯度估计的稳定性。较大的批量大小可以提高训练速度,但需要更多的内存。
  • 调整策略
    • 较小的批量大小会导致梯度的噪声较大,但可以在内存有限的情况下使用。
    • 较大的批量大小可以稳定梯度更新,但需要调整学习率(通常需要增加学习率)。

3. 优化器(Optimizer)

  • 主要影响:不同的优化器有不同的收敛特性和性能,如SGD、Adam、RMSprop等。
  • 调整策略
    • Adam 优化器常用于初学者,因为它具有自适应学习率,通常能较快收敛。
    • SGD + Momentum 通常在收敛性能和泛化能力上表现较好,但需要更细致的学习率调节。

4. 权重衰减(Weight Decay)

  • 主要影响:权重衰减是正则化的一种形式,防止模型过拟合。
  • 调整策略
    • 权重衰减值通常较小,可以从 1e-4 或 1e-5 开始调整。
    • 在使用 Adam 优化器时,注意区分 L2 正则化和权重衰减的区别。

5. 动量(Momentum)

  • 主要影响:动量项用于加速 SGD 优化器的收敛,通过累积过去梯度的指数衰减移动平均来加速梯度下降。
  • 调整策略
    • 动量值通常在 0.9 到 0.99 之间,可以帮助避免局部最小值。

6. 学习率调度(Learning Rate Scheduler)

  • 主要影响:学习率调度策略可以动态调整学习率,帮助模型更好地收敛。
  • 调整策略
    • 常见的调度策略有 StepLR、ReduceLROnPlateau、CosineAnnealingLR 等。
    • 根据训练过程中的验证集性能调整学习率。

7. 训练轮数(Epochs)

  • 主要影响:训练轮数决定了模型看到数据的次数。训练时间过短可能导致欠拟合,过长可能导致过拟合。
  • 调整策略
    • 通过观察验证集的性能和损失变化来决定合适的训练轮数。

超参数之间的相互影响

  1. 学习率与批量大小:批量大小和学习率有时需要一起调整。通常情况下,增大批量大小时需要相应地增大学习率。
  2. 学习率与优化器:不同的优化器可能对学习率的敏感度不同。例如,Adam 通常对学习率的选择较为宽容,而 SGD 则需要更精确的学习率调节。
  3. 学习率与动量:在使用 SGD 时,动量和学习率一起调整可以更好地控制训练过程的收敛性。
  4. 权重衰减与学习率:较高的权重衰减可能需要较低的学习率来确保稳定性。

调整超参数的策略

  1. 网格搜索(Grid Search):在超参数空间内进行全面搜索,但计算成本较高。
  2. 随机搜索(Random Search):随机选择超参数进行搜索,通常能获得比网格搜索更好的效果。
  3. 贝叶斯优化(Bayesian Optimization):通过构建代理模型来选择超参数,能够高效找到较优的超参数组合。
  4. 超参数调度器(Hyperparameter Schedulers):如 Hyperband,通过动态调整超参数来提高搜索效率。

通过以上经验法则和策略,你可以更有效地调整超参数,提高模型性能和训练效率。

这篇关于深度学习调参笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082592

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操