数学-奇异值

2024-06-21 23:04
文章标签 数学 奇异

本文主要是介绍数学-奇异值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有点名词党

奇异值的计算通常涉及矩阵的奇异值分解Singular Value Decomposition, SVD。奇异值分解是将一个矩形矩阵 ( A ) 分解为三个矩阵的乘积:

[ A = U ΣVT]

其中:

- ( U ) 是一个 ( m ×m ) 的正交矩阵,它的列向量是 ( A AT) 的特征向量。

- ( V ) 是一个 ( n ×n ) 的正交矩阵,它的列向量是 ( ATA ) 的特征向量。

- ( Σ) 是一个 ( m ×n ) 的对角矩阵,对角线上的非负数称为奇异值,其余位置上的元素都是零。

计算奇异值的步骤如下:

1. **计算 ( ATA ) ( A AT)** 对给定的矩阵 ( A ) 计算 ( ATA ) ( A AT)。

2. **计算特征值:** 分别计算 ( ATA ) ( A AT) 的特征值。

3. **计算奇异值:** 奇异值是 ( ATA ) ( A AT) 的特征值的平方根。具体来说,( ATA ) 的特征值 ( λ) ( A ) 的奇异值 ( σ) 之间的关系是 ( σ= λ)。

4. **排序奇异值:** 将计算得到的奇异值按照从大到小的顺序排列,这些值就是 ( Σ) 对角线上的元素。

特征值和奇异值是两个不同的概念,它们之间的关系取决于矩阵的结构和大小。
对于一个方阵(即行数和列数相等的矩阵),其特征值和奇异值是有直接关系的。在这种情况下,方阵的特征值的平方确实等于奇异值的平方。这是因为方阵的奇异值分解与其特征值分解是等价的,奇异值就是特征值的绝对值。
但是,对于一个长方形矩阵(即行数和列数不相等的矩阵),情况就不同了。长方形矩阵没有特征值(因为它不是方阵,不能被对角化),但可以有奇异值。在这种情况下,奇异值是由矩阵的谱范数(即最大奇异值)和列空间、行空间的几何关系决定的,并不直接对应于特征值的平方。
总结来说:
- 对于方阵,特征值的绝对值等于奇异值。
- 对于长方形矩阵,没有特征值,但有奇异值,且奇异值的计算与特征值无关。
因此,不能简单地说特征值是奇异值的平方,这种关系只适用于方阵,并且是在特征值的绝对值和奇异值之间。对于非方阵,我们必须使用奇异值分解来计算奇异值。

在实际应用中,通常使用数值计算软件(如MATLAB、NumPy)提供的函数来计算奇异值,因为这些软件已经对奇异值分解算法进行了优化,能够高效且准确地计算奇异值。例如,在Python中,可以使用NumPy库的 `numpy.linalg.svd` 函数来计算矩阵的奇异值分解。

这篇关于数学-奇异值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082585

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

2024年AMC10美国数学竞赛倒计时两个月:吃透1250道真题和知识点(持续)

根据通知,2024年AMC10美国数学竞赛的报名还有两周,正式比赛还有两个月就要开始了。计划参赛的孩子们要记好时间,认真备考,最后冲刺再提高成绩。 那么如何备考2024年AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

2024年高教社杯数学建模国赛最后一步——结果检验-事关最终奖项

2024年国赛已经来到了最后一天,有必要去给大家讲解一下,我们不需要过多的去关注模型的结果,因为模型的结果的分值设定项最多不到20分。但是如果大家真的非常关注的话,那有必要给大家讲解一下论文结果相关的问题。很多的论文,上至国赛优秀论文下至不获奖的论文并不是所有的论文都可以进行完整的复现求解,大部分数模论文都为存在一个灰色地带。         白色地带即认为所有的代码均可运行、公开

CSP-J基础之数学基础 初等数论 一篇搞懂(二)

文章目录 前言算术基本定理简介什么是质数?举个简单例子:重要的结论:算术基本定理公式解释:举例: 算术基本定理的求法如何找出质因数:举个简单的例子: 重要的步骤:C++实现 同余举个例子:同余的性质简介1. 同余的自反性2. 同余的对称性3. 同余的传递性4. 同余的加法性质5. 同余的乘法性质 推论 总结 前言 在计算机科学和数学中,初等数论是一个重要的基础领域,涉及到整数