利用GD32F470的定时器实现频率和占空比测试

2024-06-21 19:28

本文主要是介绍利用GD32F470的定时器实现频率和占空比测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)main函数代码如下:

#include "gd32f4xx.h"
#include <stdio.h>
#include "gd32f470i_eval.h"
#include "systick.h"void TIM_PwmInit(void)
{rcu_periph_clock_enable(RCU_GPIOA);/* PWM输出管脚为复用推挽模式 */gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE,GPIO_PIN_1);gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,GPIO_PIN_1);gpio_af_set(GPIOA, GPIO_AF_1, GPIO_PIN_1);/* PWM输入管脚为浮空输入模式 */gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE,GPIO_PIN_6);gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,GPIO_PIN_6);gpio_af_set(GPIOA, GPIO_AF_1, GPIO_PIN_6);/* TIMER1初始化 */timer_oc_parameter_struct timer_ocintpara = {0};timer_parameter_struct timer_initpara = {0};rcu_periph_clock_enable(RCU_TIMER1);timer_deinit(TIMER1);timer_initpara.prescaler         = (108 - 1);  // 预分频:108MHz / 108 = 1MHztimer_initpara.alignedmode       = TIMER_COUNTER_EDGE;  // 边沿对齐计数timer_initpara.counterdirection  = TIMER_COUNTER_UP;  // 向上计数timer_initpara.period            = (1000 - 1);  // 周期:1MHz / 1000 = 1000Hz  注: 下面设置的占空比必须小于等于period,否则错误;timer_init(TIMER1, &timer_initpara);/* 配置所有通道为PWM模式0 */timer_ocintpara.ocpolarity   = TIMER_OC_POLARITY_HIGH;  // 通道输出极性高,即高电平有效timer_ocintpara.outputstate  = TIMER_CCX_ENABLE;  // 使能输出通道timer_ocintpara.ocidlestate  = TIMER_OC_IDLE_STATE_LOW;  // 输出通道空闲低电平timer_channel_output_config(TIMER1,TIMER_CH_1, &timer_ocintpara);/* 配置通道1为25%占空比 */timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, (250 - 1));  // 250 / 1000 = 25%timer_channel_output_mode_config(TIMER1,TIMER_CH_1, TIMER_OC_MODE_PWM0);  // 配置为PWM模式0timer_channel_output_shadow_config(TIMER1,TIMER_CH_1, TIMER_OC_SHADOW_DISABLE);  // 关闭输出影子timer_auto_reload_shadow_enable(TIMER1);  // 使能重装载影子timer_enable(TIMER1);  // 使能定时器1/* 初始化TIMER2 */timer_ic_parameter_struct timer_icinitpara = {0};rcu_periph_clock_enable(RCU_TIMER2);timer_deinit(TIMER2);timer_initpara.prescaler         = (108 - 1);  // 预分频:108MHz / 108 = 1MHztimer_initpara.alignedmode       = TIMER_COUNTER_EDGE;  // 边沿对齐计数timer_initpara.counterdirection  = TIMER_COUNTER_UP;  // 向上计数模式timer_initpara.period            = (65536 - 1);  // 周期最好设置为最高,以免计数器溢出timer_initpara.clockdivision     = TIMER_CKDIV_DIV1;  // 输入时钟1分频timer_init(TIMER2,&timer_initpara);timer_icinitpara.icpolarity  = TIMER_IC_POLARITY_RISING;  // 输入极性为上升沿,即上升沿有效timer_icinitpara.icselection = TIMER_IC_SELECTION_DIRECTTI;  // 输入捕获通道连接至CIxtimer_icinitpara.icprescaler = TIMER_IC_PSC_DIV1;  // 时钟1分频timer_icinitpara.icfilter    = 0x0;timer_input_pwm_capture_config(TIMER2, TIMER_CH_0, &timer_icinitpara);timer_input_trigger_source_select(TIMER2, TIMER_SMCFG_TRGSEL_CI0FE0);  // 输入触发源为通道0timer_slave_mode_select(TIMER2, TIMER_SLAVE_MODE_RESTART);  // 从模式选择为复位模式timer_master_slave_mode_config(TIMER2, TIMER_MASTER_SLAVE_MODE_ENABLE);  // 使能从模式timer_auto_reload_shadow_enable(TIMER2);  // 使能重装载影子nvic_priority_group_set(NVIC_PRIGROUP_PRE4_SUB0);  // 抢占优先级4位,响应优先级0位nvic_irq_enable(TIMER2_IRQn, 1, 0);  // 使能中断服务,抢占优先级为1timer_interrupt_flag_clear(TIMER2, TIMER_INT_CH0);  // 清除通道0中断标志位timer_interrupt_enable(TIMER2, TIMER_INT_CH0);  // 使能通道0中断timer_enable(TIMER2);  // 使能定时器2
}int fputc(int ch, FILE *f)
{usart_data_transmit(EVAL_COM0, (uint8_t)ch);while (RESET == usart_flag_get(EVAL_COM0, USART_FLAG_TBE));return ch;
}extern __IO uint16_t dutycycle;
extern __IO uint16_t frequency;
int main(void)
{systick_config();TIM_PwmInit();gd_eval_com_init(EVAL_COM0);while(1){printf("dutycycle: %d%%, frequency: %dHz\n", dutycycle, frequency);delay_1ms(1000);}
}

2)中断函数如下所示(gd32f4xx_it.c):

uint32_t ic1value = 0, ic2value = 0;
__IO uint16_t dutycycle = 0;
__IO uint16_t frequency = 0;void TIMER2_IRQHandler(void)
{if(SET == timer_interrupt_flag_get(TIMER2, TIMER_INT_CH0)){timer_interrupt_flag_clear(TIMER2, TIMER_INT_CH0);  // 清除中断标志位ic1value = timer_channel_capture_value_register_read(TIMER2, TIMER_CH_0) + 1;if(0 != ic1value){ic2value = timer_channel_capture_value_register_read(TIMER2, TIMER_CH_1) + 1;dutycycle = (ic2value * 100) / ic1value;  // 计算占空比frequency = (float)1000000 / ic1value;  // 计算频率}else{dutycycle = 0;frequency = 0;}}
}

3)测试方法:PA6与PA1用镊子短接,用示波器连接信号,串口打开,如下图所示:
在这里插入图片描述
从上图可知道,频率是927赫兹,(目标代码应该是1000HZ),有一定误差,

在这里插入图片描述
上图示波器测试的占空比是25%;
4)打开串口,查看GD32F470测试的结果,如下图所示:
在这里插入图片描述

这篇关于利用GD32F470的定时器实现频率和占空比测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082113

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、