算法设计与分析:并查集法求图论桥问题

2024-06-21 17:28

本文主要是介绍算法设计与分析:并查集法求图论桥问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、实验目的

二、问题描述

三、实验要求

四、算法思想

1.  基准算法

1.1 算法思想

1.2 代码

1.3 时间复杂度

2. 使用并查集的高效算法

2.1 算法思想

2.2 代码:

2.3 时间复杂度:

五、实验结果


实验目的

1. 掌握图的连通性。

2. 掌握并查集的基本原理和应用。

问题描述

在图论中,一条边被称为“桥”代表这条边一旦被删除,这个图的连通块数量会增加。等价地说,一条边是一座桥当且仅当这条边不在任何环上,一个图可以有零或多座桥。现要找出一个无向图中所有的桥,基准算法为:对于图中每条边uv,删除该边后,运用BFS或DFS确定u和v是否仍然连通,若不连通,则uv是桥。应用并查集设计一个比基准算法更高效的算法,不要使用Tarjan算法。                                             

            图1 没有桥的无向连通图                   图2 有16个顶点和6个桥的图(桥以红色线段标示)

实验要求

1. 实现上述基准算法。

2. 设计的高效算法中必须使用并查集,如有需要,可以配合使用其他任何数据结构。

3. 用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

4. 使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

5. 实验课检查内容:对于smallG.txt、mediumG.txt、largeG.txt中的无向图,测试高效算法的输出结果和运行时间,检查该代码,限用C或C++语言编写。其中smallG.txt和mediumG.txt为必做内容,运行时间在4分钟内有效,直接在终端输出结果和运行时间。以smallG.txt为例,输出如下:

6

0 1

2 3

2 6

6 7

9 10

12 13

0.002

其中,第一行的6表示桥数,接下来的6行分别是6座桥的两个端点,小端点在前,大端点在后,6座桥按照端点从小到大的顺序输出,最后一行的0.002为整个main函数的运行时间,单位为秒。

、算法思想

1.  基准算法

1.1 算法思想

        1)先dfs遍历图,得到连通分量个数N;

        2)遍历边集,对于每条边ei,先删除ei;

        3)再次dfs得到此时的连通分量个数num,

        4)如果num!=N,则ei为桥;否则不为桥。

        5)恢复ei,取下一条边ei+1,回到2)继续,直到遍历完全部边。

1.2 代码
int **k,*v,n,m,**br,brnum,N;
//邻接矩阵、访问位、点数、边数、是否为桥、桥数、
int *p,*d,*qiao;//并查集、点的深度、标记dfs2后是否为桥
string filename;//文件名void read1(){//初始化int i,a,b;ifstream file(filename.c_str());file>>n>>m;k=new int*[n];v=new int[n];br=new int*[n];brnum=0;for(i=0;i<n;i++){k[i]=new int[n];br[i]=new int[2];v[i]=0;br[i][0]=br[i][1]=0;for(int j=0;j<n;j++)k[i][j]=0;}for(i=0;i<m;i++){file>>a>>b;k[a][b]=1;k[b][a]=1;}file.close();
}void dfs1(int a){//dfs深度遍历int i;v[a]=1;for(i=0;i<n;i++)if(k[a][i]&&!v[i])dfs1(i);
}int count1(){//计算连通分量个数int i,num=0;for(i=0;i<n;i++)if(!v[i]){dfs1(i);num++;}return num;
}void base(){//基准法int i,j,a,b,num;ifstream file(filename.c_str());file>>n>>m;N=count1();for(i=0;i<m;i++){file>>a>>b;k[a][b]=0;//先删除该边k[b][a]=0;for(j=0;j<n;j++)v[j]=0;num=count1();if(num!=N){//判断是否为桥br[brnum][0]=a;//记录桥br[brnum][1]=b;brnum++;//桥个数增加}k[a][b]=1;//恢复该边k[b][a]=1;}file.close();
}void print1(){//因为实验对输出格式有要求int i,j,a,b;cout<<brnum<<endl;for(i=0;i<brnum-1;i++){//选择排序a=i;for(j=i+1;j<brnum;j++){if(br[j][0]<br[a][0]||(br[j][0]==br[a][0]&&br[j][1]<br[a][1]))//父端较小 或 父端相同、子端较小a=j;}b=br[a][0];br[a][0]=br[i][0];br[i][0]=b;b=br[a][1];br[a][1]=br[i][1];br[i][1]=b;}for(int i=0;i<brnum;i++){cout<<br[i][0]<<" "<<br[i][1]<<endl;}
}
1.3 时间复杂度

        n个点,m条边。需要遍历m条边,O(m),每次都需要count1一次,而count1由于是使用邻接矩阵储存边关系,最坏情况为O(n^2)。所以总的时间复杂度为O(m*n^2)。

        如果用邻接表,则count1的时间复杂度为O(n+m),总时间复杂度变为O(m(n+m))。

2. 使用并查集的高效算法

2.1 算法思想

        桥的等价意义:不在环上的边

        树是边数最小的无环图,当向树上添加任意一条顶点都在树上的边时,会形成环。桥不在环上,所以桥只能在图的生成树上。

        所以还是先构建生成树,然后不断dfs,不过dfs过程中顺便记录每个点的深度d[i]。

        再遍历所有边,每次遍历时:

                如果为生成树上的边则直接return。

                否则:求当前边两端点的最近公共祖先(LCA),过程中将路过的边(在环上)置为非桥边(q[i]==0);并根据LCA进行路径压缩compress(将环上除了LCA本身的点的父节点均设置为LCA)。

        这里以点带边,即q[i]==1表示以第i个点为尾的生成树上的边为桥,该边用(p[i],i)表示(p[i]为i在生成树上的父节点)。

2.2 代码:
void read2(){//读入文件信息并初始化…………
}void dfs2(int a,int b,int depth){//b is the ancestor of a…………
}void count2(){//生成生成树、并查集、深度集合等…………
}void compress(int x,int a){//路径压缩if(p[x]==a)//等于最近公共祖先return;else{int t=x;x=p[x];p[t]=a;compress(x,a);}
}void LCA(int a,int b){//对每条边的两点找最近公共祖先if(p[a]==b||p[b]==a)//在生成树上的边,直接返回return;else{int u=a,v=b,//保留原边的两端x=0,y=0;//判断a、b是否在while中执行了a=p[a]、b=p[b]操作,有执行才压缩,//避免其中一点是最近公共祖先时压缩导致该点父节点被自己覆盖while(1){if(d[a]>d[b]){//深度大的向上遍历qiao[a]=0;a=p[a];x=1;}else if(d[a]<d[b]){//深度大的向上遍历qiao[b]=0;b=p[b];y=1;}else if(a!=b){//深度相同但不同点,一起向上遍历qiao[a]=0;qiao[b]=0;a=p[a];b=p[b];x=y=1;}else break;//同个点,a=b=最近公共祖先}//此时a==bif(x)//路径压缩compress(u,a);if(y)compress(v,b);}
}
void better(){//并查集的高效算法int i,a,b;ifstream file(filename.c_str());//读入文件count2();//生成生成树、并查集、深度集合等file>>n>>m;for(i=0;i<m;i++){//遍历每一条边file>>a>>b;LCA(a,b);//求最近公共祖先}file.close();
}
void print2(){//打印输出……
}

     虽然压缩后不能再直接使用”if(p[a]==b||p[b]==a)“判断边(a,b)是否为原生成树上的边,但不影响结果。因为压缩的边都是非桥边,只不过会执行下面的while。但总体上压缩后效率还是提高了的。

2.3 时间复杂度:

        n个点,m条边。dfs构建生成树最坏情况下时间复杂度为O(n^2)。遍历m条边,每次查找最近公共祖先最差情况下要查找n次,时间复杂度为O(n),一次路径压缩最差情况时间复杂度也为O(n)。所以总时间复杂度为O(n*(m+n))。

实验结果

1、用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

                                                  

        验证正确。

2、使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

        mediumG.txt:

       对于largeG.txt文件,由于使用的是邻接矩阵,n太大,运行时内存不够分配,运行中断。

这篇关于算法设计与分析:并查集法求图论桥问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081862

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言