BirdTalk IM集群中消息流转策略讨论

2024-06-21 16:20

本文主要是介绍BirdTalk IM集群中消息流转策略讨论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BirdTalk IM集群中消息流转策略讨论

目前群聊的存储策略是1写多读方案;每个群组一个队列,按时间顺序排列,不区分用户;

私聊的存储是写扩散的,每个人都有自己的消息队列,按时间顺序 保存所有的消息,不区分会话;

1、单机模式

1.1 私聊消息

登录的算法,要求用户按照ID指定的服务器,而不是按照IP,这是因为ip经常发生变动;用ID可以保证各个会话终端都在一个服务器上;

私聊有3类确认:

1)服务器入库的成功回执;

2)对方给的送达回执;

3)阅读回执;

客户端需要一个定时器,对发送的消息监控,如果30秒没有回复成功,认为发送失败;最多尝试3次;

对于没有送达回执的消息,需要向服务区发送查询请求,(回执可能丢失),查询回执会让服务器对在线用户尝试重发;只要客户端实现的正确的,就肯定不会丢消息并应答送达回执;阅读回执可有可无;

1.2 群聊消息

对于单机的群聊,对于内存中没有的用户,就是不在线的,不转发数据;

当群聊用户某个时间点登录,那么先做准备工作,标记自己状态,然后开始同步历史数据,这样能保证数据不丢失。

2、集群模式

不同于TINODE集群直接使用RPC连接,而是使用消息队列同步消息,当一条消息需要从一台服务器路由到另一一台服务器时,可以使用kafka的一个主题来实现,每个服务器一个单独的主题用于接收;这比每对服务器都要建立一个连接好多了,如果集群有1000台服务器,那么就需要1000个TCP连接。

路由可以使用redis辅助实现,为了及时通知对方发现路由变更,也需要使用一个公共的主题来广播消息。

2.1 私聊消息

假如有服务器A和服务器B,小明在服务器A,小美在服务器B;

开始时候小美不在线,消息都写入了小美的消息队列;当某一时刻,小美在服务器B登录,那么:

1)先告知集群当前此用户的此会话在服务器B;

2)执行一次同步历史数据之后,准备接收来自其他服务器用户的数据,当然也包括服务器A;

这里存在一个问题:

服务器A上的小明发现小美上线前,将数据写到了小美的消息队列,但是其实此刻,小美已经上线并且同步完数据了;那么这条消息就会被服务器遗漏,小美客户端也无从得知该条消息;

这个问题的产生主要是路由状态的扩散需要时间,异步的同步历史数据会造成潜在的数据丢失。

但是,与群聊不同,私聊是有回执的;当小明发现小美一直都没有回复接收回执,则会一直查询回执,服务器A会重发消息,此时如果发现了消息路由在服务器B,可以保证消息重发而不丢失;

但是有个缺点也很明显:有可能之前丢失的消息会在客户端出现乱序!!!

2.2 群聊消息

假如有服务器A和服务器B,一个群组G100;小明在服务器A,小美在服务器B;

当小美在服务器登录时间不确定的时候如何保证群聊消息不丢失?

可能会丢失的原因在于:

1)分布式环境下,消息的编号不是连续的流水号,无法通过编号来判断是否发生了丢失;

2)登录后如果只与服务器B同步一次数据,同步数据与其他服务器发现路由有时间差,时间差内的消息会丢失;

那么处理方式也很明显:

**1)传统轮询模式:**每次查询都告知服务器最后一条的ID,然后从数据库表中查询后续的消息,对于scylladb来说肯定是比传统的数据库强,但是效率仍然很低;

**2)暴力的集群同步:**不管服务器B是否有G100群组的用户在线,一直连续不断的转发消息,那么可以服务器B上存在的消息在时间上是连续的,那么登录后,同步一次数据就可以保证与后续转发的数据无缝衔接;

2.3 优化解决方法

那么针对2种方案时候有优化的方案呢?矫正后的算法对私聊和群聊都有效,原理是执行有限次同步以便在时间上覆盖所有范围:

3) 时间戳矫正法:

小美在服务器B登录,就绪后将状态广播到集群,之后开始同步群G100的历史数据,记录下同步到的最后一条消息的ID;假设同步的最新一条数据编号LAST_ID=1000200;(真实环境使用雪花算法)

这个LAST_ID本质上记录的是同步点;同步点仅仅随着同步查询动作而更新;

可能一:服务器A早就发现服务器B有群组G100其他用户,一直在转发数据,那么小美不会丢失数据,因为是流程是先设置状态后同步数据,服务器B可以保证消息没有丢失;对于同步前收到的数据,客户端先写到本地库,同步数据完成后再显示就不会乱序;

可能二:

小美开始是离线状态,等到小美上线服务器B,将状态发布到集群;服务器A收到群组G100到服务器B的路由;此时服务器A针对此路由,应当记录一个发现路由的时间戳(START_TM),并在在此后所有针对此路由的转发的消息都需要带上这个时间戳START_TM,含义是从此时刻起开始转发消息;(加入针对这个路由发送的第一个消息ID为 1000500,这个时间戳可以设置为发现路由后转发的第一条消息ID);

服务器B收到消息后,比对时间戳,如果 LAST_ID >= START_TM 则说明同步的的时间范围与开始转发的时间没有时间差;(在可能一中,也是满足这个不等式)。

如果 LAST_ID < START_TM 则说明存在时间差,有丢失消息风险,应该按照范围再1次执行同步数据,这样就能保证消息不丢失。同步消息后更新LAST_ID,含义是同步点可以标记到当前位置。

后续,假如有服务器C转发过来数据,也是同样大道理: 因为消息ID虽然不连续,但是雪花算法单调递增,而且里面包含了时间戳;

只要同步点晚于路由发现时间,就可以保证消息没有遗漏。

在这里插入图片描述

当服务器B上所有的关于群组G100的用户都离线后,则不需要服务器A转发数据了,则删除该路由。

相关代码:

// 发送方
type RouteData struct{MemCount int64  // 当前服务器上群组活动人员数量StartTm  int64  // 发现路由的时间戳,
}// 在群组中添加2个映射记录数据
type Group struct{GroupId  int64...RouteMap     map[string]*RouteData  // 发方:发现到某路由时候设置时间戳}
// 收方:
// 由于用户支持多终端同时在线,所以路由其实记录的用户的会话,而不是用户本身,有可能出现同一个用户登录到不同的主机上;
type Session struct{Sid  int64...GroupSynId map[int64]int64        // 收方:每个组同步操作得到的位置:groupId ->  LAST_ID
}

当服务器B有群组G100的用户时,会记录如下

//lock
group.RouteMap["serverB"] = &RouteData{MemCount: 1,StartTm:  1000500}

当路由消失后,则删除此路由;

针对私聊采用类似的策略:

其中,有可能出现同一个用户登录到不同的主机上;

type SessionOnserverData struct{    // 每个会话在哪个服务器上,记录首次发现路由的时间SessionList  []int64StartTm int64
}// 有可能该好友的会话分布在多种终端,但是按照算法大多在同一个服务器
type UserRouteData struct{SessionOnServerMap  map[string]*SessionOnserverData   // 服务器——>会话列表}type User struct{UserId int64...FriendRoute map[int64]*UserRouteData  // 针对好友的路由,UID-> 路由信息
}
// 接收方,在会话中记录好友发来的最后的消息的LAST_ID,
type Session struct{Sid  int64..LastSynPoint int64  //会话已经完成同步最新的ID,因为所有消息都存在在一起,不用区分好友
}

从上面可以总结:

收方记录的同步点是基于队列的;

群聊的路由发现是以服务器为单位执行转发;(减少处理的复杂度)

私聊的路由发现是基于服务器为单位执行转发;

2.4 收方消息处理

收方如果从消息队列拿到数据后,直接在线程池中处理,会造成用户数据的并发冲突,我们这里针对每个用户需要线性处理;

合适的方式是将消息分发到各个会话的消息缓存队列中,由会话的读协程来处理这个内容;

完。

这篇关于BirdTalk IM集群中消息流转策略讨论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081720

相关文章

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

SpringBoot 自定义消息转换器使用详解

《SpringBoot自定义消息转换器使用详解》本文详细介绍了SpringBoot消息转换器的知识,并通过案例操作演示了如何进行自定义消息转换器的定制开发和使用,感兴趣的朋友一起看看吧... 目录一、前言二、SpringBoot 内容协商介绍2.1 什么是内容协商2.2 内容协商机制深入理解2.2.1 内容

Nacos集群数据同步方式

《Nacos集群数据同步方式》文章主要介绍了Nacos集群中服务注册信息的同步机制,涉及到负责节点和非负责节点之间的数据同步过程,以及DistroProtocol协议在同步中的应用... 目录引言负责节点(发起同步)DistroProtocolDistroSyncChangeTask获取同步数据getDis

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

HDFS—集群扩容及缩容

白名单:表示在白名单的主机IP地址可以,用来存储数据。 配置白名单步骤如下: 1)在NameNode节点的/opt/module/hadoop-3.1.4/etc/hadoop目录下分别创建whitelist 和blacklist文件 (1)创建白名单 [lytfly@hadoop102 hadoop]$ vim whitelist 在whitelist中添加如下主机名称,假如集群正常工作的节

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

ActiveMQ—消息特性(延迟和定时消息投递)

ActiveMQ消息特性:延迟和定时消息投递(Delay and Schedule Message Delivery) 转自:http://blog.csdn.net/kimmking/article/details/8443872 有时候我们不希望消息马上被broker投递出去,而是想要消息60秒以后发给消费者,或者我们想让消息没隔一定时间投递一次,一共投递指定的次数。。。 类似

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww