日志分析(php+nosql+rsync+crontable)

2024-06-21 10:48

本文主要是介绍日志分析(php+nosql+rsync+crontable),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

是不是常常要分析用户的行为?是不是常常遇到多台服务器上传的日志一起分析?是不是对数据统计的间隔时间要求很短?还有木有因为日志文件过大,而需要分块处理?

1、说明一点在日志写入的时候必须按照一种严格的格式,这样在做解析的时候,才好切割。比如 gameid:123  gameid:2333。切割统一标准就行。

2、在生成日志的文件名的时候也要按照一定规则,在分析的时候,正则表达式好匹配,如 服务器hostname_date.log  这样在匹配的时候 只需要 glob(*—date.log); //glob 见php函数手册,寻找与模式匹配的文件路径。

3、为什么要用nosql?其实工程师不是仅仅局限于知道怎么实现,而是要多思考什么样的业务用什么样的工具来解决。非关系型数据很适合这种,日志中常常加入新的行为,你用key-value的方式,不需要日志新增了要分析的行为,你就得手动改变你程序的配置,这样我个人觉得不是太好。~假如用mysql,你纵向设计数据库,

结构: id gameid count createtime

          1   1001    3000  2013-03-23  12:22:21

          2   1002   2222   2013-03-23  12:22:21

        ………………

这样设计的话那么不会因为新增gameid来修改数据表,这样有什么坏处?那就是每次插入数据很多,假如30秒插入一次,一次插入30个游戏的统计值,那么一天的增量  2*30*60*24 = 86400 条数据,这样显然不合理。

那么横向设计,一次插入一条数据。

id gameid_1001 gameid_1002 gameid_1003 …… createtime 

1  3000             2222             40000               2013-03-23 09:08:56

2  4000             1800             4000                2013-03-23 09:09:20

……

 这样的坏处是 每次新增了游戏ID 那么就得改变数据表结构,加字段,当然你牛逼点的可以全部用程序来实现,但是这样我觉得不太好。

mongo中有这个内嵌文档,很爽。推荐使用hadoop

存储结构如下

        +{

            "_id":3e3ess3sazxcdsdsfdf,

            "createtime":"2013-03-23 09:13:02",

            "data":{

                    "gameid_1001": 2000,

                    "gameid_1002": 3000,

                    ……

                      }


        }

一次只插入一条数据,新增游戏类型不需要做任何改变,perfect~

4、为什么要用rsync?将多台服务器的日志同步到一个目录下,一起处理,比较方便。

5、需要用到的几个函数,glob, fopen,fget,isset,explode

程序最好不要写得很死板,

 批量读入日志文件

$sLogfileName = '/path/../*_date.log';

$aLogfileName = glop($sLogfileName); // 匹配要处理的日志文件,读入数组中。

……

fopen();

while() //用while循环,处理完文件中的一行数据再去文件中取,如果用foreach一次读入数组,内存会溢出。

{

……

}

……

$aCountResult = array();

$iNum = 100;

if(isset($aCountResult[$iGameId]))

        $aCountResult[$iGameId] = (int)$aCountResult[$iGameId] + $iNum;

else

        $aCountResult[$iGameId] = $iNum;

……

统计完插入。。

然后加入计划程序中,ok。。

主要还是不同的业务用不同的方法解决。

@update 2013-3-25 21:31:45

在日志分析中 \n 是一个很重要的切割符,避免防止内存溢出,不要以 \n

EOF 作为切割符,同事要严格按照日志标准格式写入,这样在解析的时候比较好解析。用fgets方式获取,不能一次读入内存中。

这篇关于日志分析(php+nosql+rsync+crontable)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081010

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

如何自定义Nginx JSON日志格式配置

《如何自定义NginxJSON日志格式配置》Nginx作为最流行的Web服务器之一,其灵活的日志配置能力允许我们根据需求定制日志格式,本文将详细介绍如何配置Nginx以JSON格式记录访问日志,这种... 目录前言为什么选择jsON格式日志?配置步骤详解1. 安装Nginx服务2. 自定义JSON日志格式各

SpringBoot项目使用MDC给日志增加唯一标识的实现步骤

《SpringBoot项目使用MDC给日志增加唯一标识的实现步骤》本文介绍了如何在SpringBoot项目中使用MDC(MappedDiagnosticContext)为日志增加唯一标识,以便于日... 目录【Java】SpringBoot项目使用MDC给日志增加唯一标识,方便日志追踪1.日志效果2.实现步

SQL Server清除日志文件ERRORLOG和删除tempdb.mdf

《SQLServer清除日志文件ERRORLOG和删除tempdb.mdf》数据库再使用一段时间后,日志文件会增大,特别是在磁盘容量不足的情况下,更是需要缩减,以下为缩减方法:如果可以停止SQLSe... 目录缩减 ERRORLOG 文件(停止服务后)停止 SQL Server 服务:找到错误日志文件:删除

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑