文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》

本文主要是介绍文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是提出并研究了一种基于信息间隙决策理论(IGDT)-效用熵的园区综合能源系统(PIES)优化配置方法。以下是论文的主要内容概述:

  1. 研究背景:随着中国“双碳”目标的提出,推动能源系统低碳转型变得尤为重要。园区综合能源系统(PIES)作为能源系统的重要组成部分,其优化配置对于提高系统的鲁棒性,即应对不确定性波动的适应性具有重要意义。

  2. 研究问题:PIES在参与碳交易时面临碳交易价格、能源价格的长期不确定性,以及可再生能源短期不确定性的挑战。研究如何在有限的总成本预算下优化配置PIES各设备容量,提高系统对不确定性波动的适应性。

  3. 研究方法:论文首先建立了基于能源集线器的多能流与碳交易量耦合模型,描述碳交易量与多能流间的耦合关系。然后,采用IGDT处理碳交易价格与能源价格的长期不确定性,利用效用熵模拟风光出力的短期不确定性。

  4. 优化配置模型:在确定性模型的基础上,考虑PIES决策者可接受的额外投资能力,确定总成本预算限额。引入鲁棒性系数描述PIES对不确定性波动的适应性,建立以最大化鲁棒性系数为目标的优化配置模型。

  5. 算例分析:以中国北方某PIES为例,通过不同场景的对比分析,验证了所提优化配置方法的有效性。结果表明,该方法可以有效提高PIES的鲁棒性,降低不确定性波动造成的经济损失。

  6. 研究结论:论文提出的基于IGDT-效用熵的PIES优化配置方法,可以在保证经济性的同时,提高PIES对不确定性波动的适应性,对于实现能源系统的低碳转型具有重要的理论和实践意义。

  7. 关键词:园区综合能源系统;优化配置;碳交易;不确定性;信息间隙决策理论。

论文的主要贡献在于提出了一种新的PIES优化配置方法,该方法考虑了长期和短期不确定性因素,并通过IGDT和效用熵对这些不确定性进行了量化和优化处理,为实现PIES的低碳、高效和鲁棒运行提供了理论支持和实践指导。

根据论文摘要与仿真算例的描述,以下是仿真复现的思路和程序语言的概念性表示(使用Python语言):

仿真复现思路:

  1. 数据准备:收集或生成所需的气象数据(如光照强度、风速)以及能源价格和碳交易价格数据。

  2. 模型建立:根据论文中描述的多能流与碳交易量耦合模型,建立PIES的数学模型,包括能量转换设备模型、储能模型、可再生能源模型等。

  3. 不确定性建模:使用IGDT方法处理长期不确定性(如碳交易价格和能源价格),使用效用熵方法处理短期不确定性(如风光出力)。

  4. 优化配置:建立优化配置模型,包括目标函数和约束条件,使用混合整数线性规划(MILP)方法求解。

  5. 鲁棒性分析:通过改变总成本预算限额和效用熵限值系数,分析PIES配置方案的鲁棒性。

  6. 结果分析:对比不同场景下的规划结果,评估所提方法对提高PIES鲁棒性的效果。

程序语言概念性表示(Python):

# 导入所需的库
import pandas as pd
import numpy as np
from scipy.optimize import linprog
import matplotlib.pyplot as plt# 数据准备
# 读取或生成气象数据和价格数据
# 例如:df_weather = pd.read_csv('weather_data.csv')
# df_prices = pd.read_csv('energy_prices.csv')# 定义设备参数和模型
class PIES_System:def __init__(self, equipment_params, weather_data, price_data):self.equipment_params = equipment_paramsself.weather_data = weather_dataself.price_data = price_datadef energy_hub_model(self):# 建立基于能源集线器的多能流与碳交易量耦合模型passdef uncertainty_modeling(self, igdt_params, utility_entropy_params):# 使用IGDT和效用熵对不确定性进行建模passdef optimization_model(self, budget_limit, robustness_coefficient):# 建立优化配置模型并求解# 此处使用线性规划作为示例c = np.array([...])  # 目标函数系数A_ub = np.array([...])  # 约束条件b_ub = np.array([...])res = linprog(c, A_ub=A_ub, b_ub=b_ub, method='highs')return res.x, res.fundef robustness_analysis(self, scenarios):# 鲁棒性分析passdef result_analysis(self, configurations):# 结果分析pass# 主函数
def main():# 初始化PIES系统equipment_params = {...}  # 设备参数weather_data = {...}  # 气象数据price_data = {...}  # 价格数据pies_system = PIES_System(equipment_params, weather_data, price_data)# 建模和优化配置igdt_params = {...}  # IGDT参数utility_entropy_params = {...}  # 效用熵参数budget_limit = ...  # 总成本预算限额robustness_coefficient = ...  # 鲁棒性系数pies_system.uncertainty_modeling(igdt_params, utility_entropy_params)configurations, total_cost = pies_system.optimization_model(budget_limit, robustness_coefficient)# 鲁棒性分析scenarios = [...]  # 不同场景pies_system.robustness_analysis(scenarios)# 结果分析pies_system.result_analysis(configurations)if __name__ == "__main__":main()

请注意,上述代码仅为概念性描述,并非完整的可执行程序。实际编程时需要根据具体的优化问题和约束条件来实现相应的优化算法,以及详细的系统模型参数和求解器调用。此外,还需要实现数据读取、模型建立、结果分析和可视化等功能。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

null电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080853

相关文章

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则