文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》

本文主要是介绍文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是提出并研究了一种基于信息间隙决策理论(IGDT)-效用熵的园区综合能源系统(PIES)优化配置方法。以下是论文的主要内容概述:

  1. 研究背景:随着中国“双碳”目标的提出,推动能源系统低碳转型变得尤为重要。园区综合能源系统(PIES)作为能源系统的重要组成部分,其优化配置对于提高系统的鲁棒性,即应对不确定性波动的适应性具有重要意义。

  2. 研究问题:PIES在参与碳交易时面临碳交易价格、能源价格的长期不确定性,以及可再生能源短期不确定性的挑战。研究如何在有限的总成本预算下优化配置PIES各设备容量,提高系统对不确定性波动的适应性。

  3. 研究方法:论文首先建立了基于能源集线器的多能流与碳交易量耦合模型,描述碳交易量与多能流间的耦合关系。然后,采用IGDT处理碳交易价格与能源价格的长期不确定性,利用效用熵模拟风光出力的短期不确定性。

  4. 优化配置模型:在确定性模型的基础上,考虑PIES决策者可接受的额外投资能力,确定总成本预算限额。引入鲁棒性系数描述PIES对不确定性波动的适应性,建立以最大化鲁棒性系数为目标的优化配置模型。

  5. 算例分析:以中国北方某PIES为例,通过不同场景的对比分析,验证了所提优化配置方法的有效性。结果表明,该方法可以有效提高PIES的鲁棒性,降低不确定性波动造成的经济损失。

  6. 研究结论:论文提出的基于IGDT-效用熵的PIES优化配置方法,可以在保证经济性的同时,提高PIES对不确定性波动的适应性,对于实现能源系统的低碳转型具有重要的理论和实践意义。

  7. 关键词:园区综合能源系统;优化配置;碳交易;不确定性;信息间隙决策理论。

论文的主要贡献在于提出了一种新的PIES优化配置方法,该方法考虑了长期和短期不确定性因素,并通过IGDT和效用熵对这些不确定性进行了量化和优化处理,为实现PIES的低碳、高效和鲁棒运行提供了理论支持和实践指导。

根据论文摘要与仿真算例的描述,以下是仿真复现的思路和程序语言的概念性表示(使用Python语言):

仿真复现思路:

  1. 数据准备:收集或生成所需的气象数据(如光照强度、风速)以及能源价格和碳交易价格数据。

  2. 模型建立:根据论文中描述的多能流与碳交易量耦合模型,建立PIES的数学模型,包括能量转换设备模型、储能模型、可再生能源模型等。

  3. 不确定性建模:使用IGDT方法处理长期不确定性(如碳交易价格和能源价格),使用效用熵方法处理短期不确定性(如风光出力)。

  4. 优化配置:建立优化配置模型,包括目标函数和约束条件,使用混合整数线性规划(MILP)方法求解。

  5. 鲁棒性分析:通过改变总成本预算限额和效用熵限值系数,分析PIES配置方案的鲁棒性。

  6. 结果分析:对比不同场景下的规划结果,评估所提方法对提高PIES鲁棒性的效果。

程序语言概念性表示(Python):

# 导入所需的库
import pandas as pd
import numpy as np
from scipy.optimize import linprog
import matplotlib.pyplot as plt# 数据准备
# 读取或生成气象数据和价格数据
# 例如:df_weather = pd.read_csv('weather_data.csv')
# df_prices = pd.read_csv('energy_prices.csv')# 定义设备参数和模型
class PIES_System:def __init__(self, equipment_params, weather_data, price_data):self.equipment_params = equipment_paramsself.weather_data = weather_dataself.price_data = price_datadef energy_hub_model(self):# 建立基于能源集线器的多能流与碳交易量耦合模型passdef uncertainty_modeling(self, igdt_params, utility_entropy_params):# 使用IGDT和效用熵对不确定性进行建模passdef optimization_model(self, budget_limit, robustness_coefficient):# 建立优化配置模型并求解# 此处使用线性规划作为示例c = np.array([...])  # 目标函数系数A_ub = np.array([...])  # 约束条件b_ub = np.array([...])res = linprog(c, A_ub=A_ub, b_ub=b_ub, method='highs')return res.x, res.fundef robustness_analysis(self, scenarios):# 鲁棒性分析passdef result_analysis(self, configurations):# 结果分析pass# 主函数
def main():# 初始化PIES系统equipment_params = {...}  # 设备参数weather_data = {...}  # 气象数据price_data = {...}  # 价格数据pies_system = PIES_System(equipment_params, weather_data, price_data)# 建模和优化配置igdt_params = {...}  # IGDT参数utility_entropy_params = {...}  # 效用熵参数budget_limit = ...  # 总成本预算限额robustness_coefficient = ...  # 鲁棒性系数pies_system.uncertainty_modeling(igdt_params, utility_entropy_params)configurations, total_cost = pies_system.optimization_model(budget_limit, robustness_coefficient)# 鲁棒性分析scenarios = [...]  # 不同场景pies_system.robustness_analysis(scenarios)# 结果分析pies_system.result_analysis(configurations)if __name__ == "__main__":main()

请注意,上述代码仅为概念性描述,并非完整的可执行程序。实际编程时需要根据具体的优化问题和约束条件来实现相应的优化算法,以及详细的系统模型参数和求解器调用。此外,还需要实现数据读取、模型建立、结果分析和可视化等功能。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

null电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080853

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

电力系统中的A类在线监测装置—APView400

随着电力系统的日益复杂和人们对电能质量要求的提高,电能质量在线监测装置在电力系统中得到广泛应用。目前,市场上的在线监测装置主要分为A类和B类两种类型,A类和B类在线监测装置主要区别在于应用场景、技术参数、通讯协议和扩展性。选择时应根据实际需求和应用场景综合考虑,并定期维护和校准。电能质量在线监测装置是用于实时监测电力系统中的电能质量参数的设备。 APView400电能质量A类在线监测装置以其多核

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象