PyTorch 1.1.0发布,官方支持TensorBoard,还有更多性能和分布式功能的提升!

本文主要是介绍PyTorch 1.1.0发布,官方支持TensorBoard,还有更多性能和分布式功能的提升!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Facebook

编译:ronghuaiyang

导读

Facebook刚刚发布了PyTorch的最新版本,PyTorch1.1.0,这是自从发布PyTorch1.0以来的又一个重大的更新


Facebook刚刚发布了PyTorch的最新版本,PyTorch1.1.0,这是自从发布PyTorch1.0以来的又一个重大的更新,在这个版本中,最最显眼的一个更新就是官方支持TensorBoard了,之前大家都是用的TensorBoardX,这次,终于可以光明正大的使用TensorBoard了,顺便吐槽一下visdom,确实不如TensorBoard好用。

除了TensorBoard之外,其实还有不少重要的更新,下面给大家提供一些摘要,给大家先过目一遍,我列出了一些要点,更多的内容大家可以去看看原文。

注意:不再支持CUDA 8.0

重点

TensorBoard (试验)

使用TensorBoard对可视化和模型调试提供一流的本地支持,这是一个用于检查和理解训练运行、张量和图的web应用程序套件。PyTorch现在支持TensorBoard通过一个简单的 fromtorch.utils.tensorboardimportSummaryWriter命令来写入日志。直方图、嵌入、标量、图像、文本、图形,以及更多东西都可以在训练过程中进行可视化。目前,TensorBoard支持还处于试验阶段。

640?wx_fmt=png

[JIT] ScriptModules中的属性

可以在 ScriptModule上分配属性,方法是用 torch.jit.Attribute指定类型。属性类似于参数或缓冲区,但可以是任何类型。当你调用 torch.jit.save()时,它们将与任何参数/缓冲区一起被序列化,因此它们是在模型中存储任意状态的好方法。

例子:

class Foo(torch.jit.ScriptModule):	def __init__(self, a_dict):	super(Foo, self).__init__(False)	self.words = torch.jit.Attribute([], List[str])	self.some_dict = torch.jit.Attribute(a_dict, Dict[str, int])	@torch.jit.script_method	def forward(self, input: str) -> int:	self.words.append(input)	return self.some_dict[input]

[JIT] 在TorchScript中支持字典和列表

TorchScript现在对列表和字典类型提供了健壮的支持。它们的行为很像Python列表和字典,支持大多数内置方法,包括简单的包含操作和 forin的构造方式。

[JIT] 在TorchScript中用户自己定义类 (试验)

对于更复杂的有状态操作,TorchScript现在支持用 @torch.jit.script标注类。使用这种方法的类可以像其他TorchScript模块一样在c++中jit编译和加载。

@torch.jit.script	
class Pair:	def __init__(self, first, second)	self.first = first	self.second = second	def sum(self):	return self.first + self.second

DistributedDataParallel新功能和指南

nn.parallel.DistributedDataParallel:现在可以封装multi-GPU模块,可以在一台服务器上使用模型并行,以及多台服务器上使用数据并行。

突破性的改进

  • Tensor.set_: Tensor中的 device不再可以通过 Tensor.set_来改变了. 这通常发生在使用默认CUDA设备设置Tensor,然后在另一个CUDA设备的 Storage中交换Tensor时。相反,需要从一开始就在正确的设备上建立Tensor。

  • 注意 lr_scheduler.step()的顺序更改了。

  • torch.unique: 把 sorted的默认值改成了 True.

  • [JIT] 重命名isTensor接口为isCompleteTensor.

  • [JIT] 去掉了GraphExecutor的python绑定.

  • [C++]: many methods on 在 Type上的许多方面现在不再退出了,可以使用函数或者Tensor的方法来起到同样的效果.

  • [C++]TensorOptions 的 Backend构造器不存在了. (18137).

  • [C++, Distributed]: 去掉了c10d ProcessGroup::getGroupRank 也去掉了.

Tensors / dtypes

  • torch.bool: 增加了对 torch.bool类型以及该类型张量 (存储为1-byte)的支持. 支持NumPy的转化,但是操作现在是有限制的.

优化器

  • optim.lr_scheduler.CyclicLR: 支持循环学习率和动量.

  • optim.lr_scheduler.CosineAnnealingWarmRestarts: 新的学习率策略:带热身重启的随机梯度下降.

  • 支持多个同步的学习率策略.

分布式

  • torch.distributions: 现在支持多重继承.

采样

  • quasirandom.SobolEngine: 新采样器.

DistributedDataParallel

  • nn.parallel.DistributedDataParallel: 现在支持带无用参数的模型(例如控制流,比如adaptive softmax等等).

提升

  • torch.mintorch.maxtorch.mediantorch.modetorch.kthvaluetorch.symeigtorch.eigtorch.pstrftorch.qrtorch.geqrftorch.solvetorch.slogdettorch.sorttorch.topktorch.gelstorch.triangular_solve 现在返回一个名称元组来描述输出.

  • torch.empty (还有其他的构造函数): 现在可以接受 pin_memory 参数; 现在不用 torch.Storage也可以就那些pin了.. .

  • torch.histc: 现在支持CUDA了.

  • torch.unique: 增加了 return_counts.

  • torch.logspace: 增加了指定对数底的功能.

  • torch.set_printoptions: 增加对科学计数的支持 .

  • torch.btrifact 现在可以操作超过3维的tensor.

  • torch.kthvalue: 支持CUDA.

  • torch.abs: 支持 uint8 和 int8 类型.

  • torch.stacktorch.cat: 支持CPU半精度tensors.

  • torch.cross: 支持负维度.

  • torch.lerp: 增加像支持Tensor一样支持 weight.

  • torch.transpose: 和NumPy变得一样了: 1-d和0-d数组都可以接受,返回原来一样的数组.

  • torch.linspacetorch.logspace 现在可以使用 steps=1 和 start!=end

  • torch.cholesky: 把导数从三角形矩阵变成对称矩阵.

  • torch.lerp: 提升了数值稳定性.

  • torch.logdettorch.slogdet: 提升了数值精度.

  • Tensor.__contains__ 现在支持了.

  • Tensor.fill_ 和 torch.zeros 在CPU上支持半精度.

  • Tensor.resize_as_Tensor.view: 在CPU上支持半精度.

  • Tensorindexing: 允许通过NumPy布尔值来进行索引.

  • nn.EmbeddingBag: 支持半精度密集后端.

  • nn.Embedding: 修改了密集嵌入来和双后端一起使用.

  • nn.MaxPool1d: 允许列表和元组作为 output_size输入.

  • nn.CTCLoss: 通过 zero_infinity参数可以支持对无限的损失置零.

  • nn.Dropout: 支持在eval时使能.

  • nn.MSELoss: 对不合法的广播进行告警.

  • nn.Module.load_state_dict: 增加两个返回值 missing_keys 和 unexpected_keys.

  • nn.parallel.data_parallel: 强制设备匹配 device_ids.

  • torch.device: 过去只接受设备好的地方,现在都可以用这个了.

  • dtype.int8 这个类型的tensors现在可以转换为NumPy数组了.

  • nn.functional.gumbel_softmax: 使用 dim参数运行多个维度的输入.

  • nn.functional.cosine_similarity: 提高了精度.

  • torch.autograd: 不再保存不需要的输入,提高了内存效率.

  • torch.autograd.profiler: 增加了自身的CPU时间,总的CPU时间.

  • DataLoader: 支持接受一个用户自定义的内存pinning函数.

  • DataLoader: 在EINTR重试libshm .

  • DataLoader: 修改了使用 pin_memory 和 PackedSequence的一个问题.

  • data.utils.collatedata.utils.pin_memory: 现在可以保存名字元组.

  • 在许多的索引错误情况下,使用 IndexError 代替 RuntimeError .

  • 在CPU上支持索引 torch.float16 tensor.

  • 在inplace操作上增加(有限的)错误检测.

  • utils.checkpoint.checkpoint: 支持 None 作为参数 .

  • torch.autograd:为 one of the variables neededforgradient computation has been modifiedbyan inplace operation 异常增加更多的信息.

  • cuda.synchronize: 增加一个设备参数.

  • cuda.reset_max_memory_*: 现在支持了.

  • distributions.Independent: 现在可以计算KL散度了.

  • torch.distributed.new_group: 现在支持覆盖默认的backend.

性能

重点

  • nn.BatchNorm CPU推理速度提升了最高19倍.

  • nn.AdaptiveAvgPool: size=1时通常可以加速30倍.

  • nn.EmbeddingBag CPU性能提升了4倍.

  • Tensor.copy_: 对于大的tensor拷贝加速了2~3倍.

  • torch.nonzero: 在CPU上现在比numpy块2倍.

  • 改进用于为Pascal架构和更新的GPU提升了缓存分配器的性能,Mask-RCNN的内存利用率提高了10-20%。

  • reduction functions: 对于某些大Tensor的情况下,加速了50-80%.

  • [JIT] Graph fuser: 在广播的存在下,更好地融合向后图.

  • [JIT] Graph fuser: batch_norm 推理时的融合.

  • [JIT] Graph fuser: layer_norm 推理时的融合. 

640?wx_fmt=png— END—

英文原文:https://github.com/pytorch/pytorch/releases

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧640?wx_fmt=gif

这篇关于PyTorch 1.1.0发布,官方支持TensorBoard,还有更多性能和分布式功能的提升!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080845

相关文章

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

最好用的WPF加载动画功能

《最好用的WPF加载动画功能》当开发应用程序时,提供良好的用户体验(UX)是至关重要的,加载动画作为一种有效的沟通工具,它不仅能告知用户系统正在工作,还能够通过视觉上的吸引力来增强整体用户体验,本文给... 目录前言需求分析高级用法综合案例总结最后前言当开发应用程序时,提供良好的用户体验(UX)是至关重要

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

如何评价Ubuntu 24.04 LTS? Ubuntu 24.04 LTS新功能亮点和重要变化

《如何评价Ubuntu24.04LTS?Ubuntu24.04LTS新功能亮点和重要变化》Ubuntu24.04LTS即将发布,带来一系列提升用户体验的显著功能,本文深入探讨了该版本的亮... Ubuntu 24.04 LTS,代号 Noble NumBAT,正式发布下载!如果你在使用 Ubuntu 23.

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

Django中使用SMTP实现邮件发送功能

《Django中使用SMTP实现邮件发送功能》在Django中使用SMTP发送邮件是一个常见的需求,通常用于发送用户注册确认邮件、密码重置邮件等,下面我们来看看如何在Django中配置S... 目录1. 配置 Django 项目以使用 SMTP2. 创建 Django 应用3. 添加应用到项目设置4. 创建

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6