雷达标定与解析

2024-06-21 08:44
文章标签 解析 标定 雷达

本文主要是介绍雷达标定与解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

融合雷达与解析雷达数据的相关代码。感谢开源社区的贡献。以下代码继承了很多人的工作。
如果是单雷达:
直接进行标定,所以就是接收相关的话题然后发布。
lidar_calibration_params.yaml:

calibration:在这个接口里面x_offset: 0.0y_offset: 0.0z_offset: 0.4roll_offset: -0.074pitch_offset: 0yaw_offset: -1.57input_topic: "/lslidar_point_cloud"
output_topic: "/fusion_points"

lidar_calibration_node.cpp

#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
#include <tf2/LinearMath/Quaternion.h>
#include <tf2/LinearMath/Matrix3x3.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl_ros/transforms.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <Eigen/Geometry>
#include <iostream>// 标定参数结构体
struct CalibrationParams
{double x_offset;double y_offset;double z_offset;double roll_offset;double pitch_offset;double yaw_offset;
};ros::Publisher calibrated_pub;
CalibrationParams calibration_params;void loadCalibrationParams(const ros::NodeHandle& nh)
{nh.getParam("calibration/x_offset", calibration_params.x_offset);nh.getParam("calibration/y_offset", calibration_params.y_offset);nh.getParam("calibration/z_offset", calibration_params.z_offset);nh.getParam("calibration/roll_offset", calibration_params.roll_offset);nh.getParam("calibration/pitch_offset", calibration_params.pitch_offset);nh.getParam("calibration/yaw_offset", calibration_params.yaw_offset);// 打印加载的参数以确认ROS_INFO("Loaded calibration parameters:");ROS_INFO("x_offset: %f", calibration_params.x_offset);ROS_INFO("y_offset: %f", calibration_params.y_offset);ROS_INFO("z_offset: %f", calibration_params.z_offset);ROS_INFO("roll_offset: %f", calibration_params.roll_offset);ROS_INFO("pitch_offset: %f", calibration_params.pitch_offset);ROS_INFO("yaw_offset: %f", calibration_params.yaw_offset);
}void laserCallback(const sensor_msgs::PointCloud2ConstPtr& cloud_msg)
{// Create transformation matrixEigen::Affine3f transform = Eigen::Affine3f::Identity();transform.translation() << calibration_params.x_offset, calibration_params.y_offset, calibration_params.z_offset;Eigen::AngleAxisf rollAngle(calibration_params.roll_offset, Eigen::Vector3f::UnitX());Eigen::AngleAxisf pitchAngle(calibration_params.pitch_offset, Eigen::Vector3f::UnitY());Eigen::AngleAxisf yawAngle(calibration_params.yaw_offset, Eigen::Vector3f::UnitZ());transform.rotate(yawAngle * pitchAngle * rollAngle);// 打印转换矩阵以确认std::cout << "Transformation Matrix:" << std::endl;std::cout << transform.matrix() << std::endl;// Transform the point cloudsensor_msgs::PointCloud2 calibrated_cloud_msg;pcl_ros::transformPointCloud(transform.matrix(), *cloud_msg, calibrated_cloud_msg);// Publish the calibrated point cloudcalibrated_cloud_msg.header = cloud_msg->header;calibrated_pub.publish(calibrated_cloud_msg);
}int main(int argc, char** argv)
{ros::init(argc, argv, "lidar_calibration_node");ros::NodeHandle nh;// 获取参数服务器中的参数std::string input_topic;std::string output_topic;int queue_size;nh.param<std::string>("input_topic", input_topic, "/lslidar_point_cloud");nh.param<std::string>("output_topic", output_topic, "/calibrated_point_cloud");nh.param<int>("queue_size", queue_size, 10);// 加载标定参数loadCalibrationParams(nh);// std::cout<<input_topic<<std::endl;// std::cout<<output_topic<<std::endl;// 订阅输入点云话题ros::Subscriber laser_sub = nh.subscribe(input_topic, queue_size, laserCallback);// 发布标定后的点云话题calibrated_pub = nh.advertise<sensor_msgs::PointCloud2>(output_topic, queue_size);ros::spin();return 0;
}

启动launch:

<launch><rosparam file="$(find lidar_calibration)/config/lidar_calibration_params.yaml" command="load"/><node pkg="lidar_calibration" type="lidar_calibration_node" name="lidar_calibration_node" output="screen"></node></launch>

以上是单个雷达的标定的,接下来是融合点云的数据标定:
来源于一个开源项目:git clone https://github.com/Hliu0313/fusion_pointclouds
也是直接修改接口就行了:

#参数加载对应 loadparams.h/loadparams.cpp,若修改params.yaml对应修改加载函数即可
fusion_lidar_num: 3                                                      #融合 lidar 点云数量 2/3/4
topics:                                                                                 #订阅 lidar 点云话题
#   parent_pc_topic: "/livox/lidar"
#   child_pc_topic1: "/right/rslidar_points"
#   child_pc_topic2: "/left/rslidar_points"
#   child_pc_topic3: "/livox/lidar"parent_pc_topic: "/livox/lidar"child_pc_topic1: "/right/rslidar_points"child_pc_topic2: "/left/rslidar_points"child_pc_topic3: "/livox/lidar"fusion_pc_topic: "/fusion_points"                       #融合后发布点云话题名称fusion_pc_frame_id: "rslidar"                 #融合后发布点云话题名称#注意
#1.点云话题少于4个时,为了时间同步回调函数适应不同数量雷达,空位child_pc_topic可以填入parent_pc_topic
#例如 需要融合"/front/rslidar_points" 与"/left/rslidar_points"点云数据
#
#fusion_lidar_num: 2
#parent_pc_topic: "/front/rslidar_points"
#child_pc_topic1: "/left/rslidar_points"
#child_pc_topic2: "/front/rslidar_points" "
#child_pc_topic3: "/front/rslidar_points" #---->   如果只是融合点云数据,下方参数填 false 即可    <------- 
set_params_tf:  true                                                     #是否对点云进行坐标变换 
set_params_internal_bounds: true                       #是否对点云内边界 XYZ 滤除
set_params_external_bounds: true                       #是否对点外内边界 XYZ 滤除
set_dynamic_params: true                                        #是否开启动态调整,配合 rqt_reconfigure 动态调整坐标变化参数 ---> 解决标定参数不准确,实时微调# cpc1_to_ppc:                                                                   #child_pc1_to_parent_pc,坐标变化信息传入节点,按需填写即可
#    x: -0.75
#    y: -0.8
#    z: 0.58
#    roll: 0.05
#    pitch: 0.01
#    yaw: 0.06
# cpc2_to_ppc:
#    x: -0.75
#    y: 0.72
#    z: 0.58
#    roll: 0.0
#    pitch: 0.0
#    yaw: -0.1
# cpc3_to_ppc:
#    x: 0.0
#    y: 0.0
#    z: 0.0
#    roll: 0.0
#    pitch: 0.0
#    yaw: 0.0cpc1_to_ppc:                                                                   #child_pc1_to_parent_pc,坐标变化信息传入节点,按需填写即可x: -0.8y: -0.5z: 1.06roll: 0.04pitch: 0.0yaw: 0.0cpc2_to_ppc:x: -0.75y: 0.75z: 1.06roll: -0.018pitch: 0.018yaw: -0.168# cpc2_to_ppc:
#    x: -0.
#    y: 0.
#    z: 0.0
#    roll: -0.0
#    pitch: -0.0
#    yaw: -0.0cpc3_to_ppc:x: 0.0y: 0.0z: 0.0roll: 0.0pitch: 0.0yaw: 0# Dynamic rqt_reconfigure default bounds
internal_bounds :  #内边界x_min: 0.0x_max: 0.0y_min: 0.0y_max: 0.0z_min: 0.0z_max: 0.0external_bounds :  #外边界x_min: -100x_max: 100y_min: -100y_max: 100z_min: -5z_max: 5

最后是聚类,也是来源于一个开源项目:
https://blog.csdn.net/weixin_42905141/article/details/122977315?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171888729016777224495812%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=171888729016777224495812&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-122977315-null-null.142v100control&utm_term=%E4%B8%9A%E4%BD%99%E5%86%99%E7%9A%84%E4%B8%80%E4%B8%AA%E7%B2%97%E7%89%88demo%EF%BC%8C%E6%9C%89%E5%BE%88%E5%A4%9A%E5%9C%B0%E6%96%B9%E6%98%AF%E5%8F%AF%E4%BB%A5%E6%94%B9%E8%BF%9B%E7%9A%84%EF%BC%8C%E5%A4%A7%E5%AE%B6%E8%87%AA%E8%A1%8C%E4%BF%AE%E6%94%B9%E5%90%A7&spm=1018.2226.3001.4187
非常感谢他的工作,接下来要做的就是把障碍物的信息用我们需要的方式重新就行发布就行了。我这里直接借鉴一下之前的比赛所遇到的障碍物的接口,我很喜欢他的这一系列的定义。
请添加图片描述
在这个接口里面主要是用上述msg来定义雷达给出的数据。
上述单雷达标定,多雷达融合,以及雷达的聚类都放到这里面了:

https://github.com/chan-yuu/lidar_ws

后续会继续做雷达处理的相关的工作

这篇关于雷达标定与解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080748

相关文章

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用