吴恩达机器学习 第三课 week1 无监督机器学习(下)

2024-06-21 05:52

本文主要是介绍吴恩达机器学习 第三课 week1 无监督机器学习(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

01 学习目标

02 异常检测算法

2.1 异常检测算法的概念

2.2 基于高斯模型的异常检测 

03 利用异常检测算法检测网络服务器的故障

3.1 问题描述

3.2 算法实现

3.3 问题升级

04 总结


01 学习目标

    (1)理解异常检测算法(Anomaly Detection Algorithm)的原理

    (2)利用异常检测算法检测网络服务器的故障。

02 异常检测算法

2.1 异常检测算法的概念

       异常检测算法不是指某一特定算法,而是实现异常检测功能的算法统称,旨在识别数据集中不符合常规模式的数据点,如欺诈检测、网络安全、故障预测、生产线上的残次品等。以下是常用的异常检测算法:

  1. 基于统计的方法:

    • Z-Score: 计算数据点与数据集平均值的偏离程度,使用标准差作为度量。如果一个数据点的Z-Score超过某个阈值(通常是3),则认为它是异常的。
    • IQR(四分位距): 计算数据的第一四分位数(Q1)和第三四分位数(Q3)之间的距离,任何小于Q1-1.5IQR或大于Q3+1.5IQR的值被视为异常。
  2. 基于密度的方法:

    • 局部异常因子(LOF, Local Outlier Factor): 通过比较一个数据点与其邻居的密度来识别异常。如果一个点的密度远低于其邻居,则被认为是异常的。
    • DBSCAN(Density-Based Spatial Clustering of Applications with Noise): 一种聚类算法,能够识别出低密度区域的点作为异常点。
  3. 基于距离的方法:

    • K-最近邻(KNN): 通过计算一个数据点到其K个最近邻的距离的平均值或加权平均值,如果这个值显著高于其他点,则认为该点是异常的。
  4. 基于概率模型的方法:

    • 高斯混合模型(GMM): 利用GMM拟合数据分布,异常点被定义为在模型下概率很低的点。
    • 隐马尔可夫模型(HMM): 对于序列数据,HMM可以用来学习数据的正常行为模式,异常则表现为模型预测概率显著降低的状态。
  5. 基于机器学习的方法:

    • 孤立森林(Isolation Forest): 通过构建随机的决策树来“隔离”数据点,异常点更容易被“孤立”,因此通过平均路径长度来评估数据点的异常程度。
    • 支持向量机(SVM): 在异常检测中,可以通过一类SVM(只有一类标签的数据)来构造一个边界,将大部分数据包含在内,超出这个边界的点视为异常。
  6. 深度学习方法:

    • 自编码器(Autoencoders): 通过训练一个自编码器来重构输入数据,异常数据往往导致较大的重构误差。
    • 生成对抗网络(GANs): 可以学习数据的正常分布,异常点通过与生成的正常数据对比来识别。

2.2 基于高斯模型的异常检测 

       高斯模型是一种连续型概率模型,用于表示服从高斯分布(正态分布)的数据。

       n维高斯分布:

f(\textbf{x}|\theta )=\frac{1}{(2\pi)^{n/2}|\sum |^{1/2}}exp[-\frac{1}{2}(\textbf{x}-\mu )^{T}|\sum |^{-1}(\textbf{x}-\mu )]

上式中,\theta=(\mu ,\sum )为待估计参数,\mu是均值,\sigma ^2是方差,由最大似然估计得到。

        n=1时,上式变为一元高斯分布:

f(x|\theta )=\frac{1}{(2\pi)^{1/2}\sigma }exp[-\frac{1}{2}(x-\mu )^2\sigma ^{-2}]=\frac{1}{\sqrt{2\pi}\sigma }exp[-\frac{(x-\mu )^2}{2\sigma ^{2}}]

上式中,参数\mu\sigma ^2按下式估计:

\mu_j=\frac{1}{m}\sum_{i=1}^{m}x_j^{(i)}

\sigma^2_j=\frac{1}{m}\sum_{i=1}^{m}(x_j^{(i)}-\mu_j)^2

上式中,j为特征序数,i为特征的数据序数,m为数据总数。

        基于高斯模型的异常检测的原理即选定一个适当小的概率值p_\varepsilon作为界限,出现概率小于p_\varepsilon的数据均为异常数据。如下图所示(以1维为例):

03 利用异常检测算法检测网络服务器的故障

3.1 问题描述

       假设你现在是贝塔科技公司的高级主管,负责公司的服务器运维。今天你抽检了服务器的307份数据,打算采用“传输的数据量 (mb/s,每秒兆字节)”和“每台服务器的响应延迟(ms,毫秒)”两项指标检测网络服务器是否存在故障。

       Let's begining!

3.2 算法实现

     (1)导包

import numpy as np
import matplotlib.pyplot as plt
from utils import *%matplotlib inline

    (2) 导入数据

      数据分为训练集和交叉验证集两部分:训练集共307组数据(抽检的数据),每组数据有2个数值,代表2个特征:“传输的数据量”、“服务器的响应延迟”;交叉验证集收集了307组数据(以前保存的数据),每组数据有3个数值,分别为2个特征和1个值,值为0或1:0为正常、1为异常。训练集数据无标签,用于估计参数\mu\sigma ^2;交叉验证集数据被标记0/1,用于确定概率界限p_{\varepsilon}.。

# 导入数据
X_train, X_val, y_val = load_data()

       X_train为训练数据集的特征列(307*2),X_val为交叉验证集的特征列(307*2),y_val 为交叉验证集的标签列(307*1)。

    (3)参数估计

        先定义高斯估计函数:

def estimate_gaussian(X): m, n = X.shapemu = np.ones(n)var = np.ones(n)for i in range(n):mu = np.sum(X, axis=0) / m    var = np.sum((X - mu) **2, axis=0) / mreturn mu, var

       然后估计参数 :

# 估计每个特征的参数
mu, var = estimate_gaussian(X_train)              print("Mean of each feature:", mu)
print("Variance of each feature:", var)

      运行以上代码,结果如下:

Mean of each feature: [14.11222578 14.99771051]
Variance of each feature: [1.83263141 1.70974533]

      现在有了参数\mu\sigma ^2,我们可以绘出概率密度分布:

# visualize_fit为自定义绘图函数
#visualize_fit(X_train, mu, var)
visualize_fit(X_val, mu, var)

       运行以上代码,结果如下(左为训练集、右为交叉验证集):

  

       (4)定义概率模型

         得到 估计参数\mu\sigma ^2后,可以利用高斯分布定义概率模型:

def multivariate_gaussian(X, mu, var):k = len(mu)if var.ndim == 1:var = np.diag(var)X = X - mup = (2* np.pi)**(-k/2) * np.linalg.det(var)**(-0.5) * \np.exp(-0.5 * np.sum(np.matmul(X, np.linalg.pinv(var)) * X, axis=1))return p

       (上面,定义了一个n维高斯分布的概率模型) 

       (5)确定概率界限

        确定概率界限的原则是,p_{\varepsilon}在合理的取值下,当p_a<p_{\varepsilon}时,在交叉验证集中异常点a能被准确识别到。如何保证高精度地识别异常呢?可以采用F1评分标准,取一系列p_{\varepsilon}进行计算,谁的F1分数最高就选谁,步骤如下:

        首先,给定p_{\varepsilon}进行预测,将预测值与实际值进行对比得到4类情况,如下表:

        然后,计算两个指标:precision(精度,查准率)和recall(召回率,查全率):

prec=\frac{tp}{tp+fp}

rec=\frac{tp}{tp+fn}

precision的含义是异常预测正确的概率有多大,recall的含义是成功找出异常的概率有多大。这两个指标存在这样的问题:当阈值p_{\varepsilon}设置为大值时prec增大、rec减小,当阈值p_{\varepsilon}设置为小值时prec减小、rec增大。

        接下来,计算一个更均衡的指标F1:

F_1=\frac{2\cdot prec\cdot rec}{prec + rec}

F1将prec和rec进行了平衡,并且F1数值受二者中较小值控制。

        现在,可以定义概率界限计算函数:

def select_threshold(y_val, p_val): best_epsilon = 0best_F1 = 0F1 = 0step_size = (max(p_val) - min(p_val)) / 1000for epsilon in np.arange(min(p_val), max(p_val), step_size):predictions = p_val < epsilontp = np.sum((predictions == 1) & (y_val == 1))fp = np.sum((predictions == 1) & (y_val == 0))fn = np.sum((predictions == 0) & (y_val == 1))if (tp + fp)  == 0 or (tp + fn) == 0:prec = 0rec = 0F1 = 0else:prec = tp / (tp + fp)rec = tp / (tp + fn)F1 = 2 * prec * rec / (prec + rec)if F1 > best_F1:best_F1 = F1best_epsilon = epsilonreturn best_epsilon, best_F1

          然后,执行函数计算:

p_val = multivariate_gaussian(X_val, mu, var)
epsilon, F1 = select_threshold(y_val, p_val)print('Best epsilon found using cross-validation: %e' % epsilon)
print('Best F1 on Cross Validation Set: %f' % F1)

       运行以上代码,结果如下:

Best epsilon found using cross-validation: 8.990853e-05
Best F1 on Cross Validation Set: 0.875000

      (6)检测异常,可视化

# 在训练集上找出异常值
outliers = p < epsilon# 二维图中绘出307组数据
visualize_fit(X_train, mu, var)# 用红色圆圈标记异常值
plt.plot(X_train[outliers, 0], X_train[outliers, 1], 'ro',markersize= 10,markerfacecolor='none', markeredgewidth=2)

       运行以上代码,结果如下:

       经过一番操作,发现这抽检的307组合数据中有6组异常。

3.3 问题升级

       当你检测出异常后,贝塔科技公司的同事们不停欢呼、夸赞你技术高超,希望你再秀一秀高级的。身为主管的你决定再抽检一批数据,以11个特征为依据进行异常检测。

       开始吧!

     (1)导入数据

# 导入数据
X_train_high, X_val_high, y_val_high = load_data_multi()
# 打印数据信息
print ('The shape of X_train_high is:', X_train_high.shape)
print ('The shape of X_val_high is:', X_val_high.shape)
print ('The shape of y_val_high is: ', y_val_high.shape)

       运行以上代码,结果为:

The shape of X_train_high is: (1000, 11)
The shape of X_val_high is: (100, 11)
The shape of y_val_high is:  (100,)

      (2)开始检测

# 参数估计
mu_high, var_high = estimate_gaussian(X_train_high)# 训练集的概率计算
p_high = multivariate_gaussian(X_train_high, mu_high, var_high)# 交叉验证集的概率计算
p_val_high = multivariate_gaussian(X_val_high, mu_high, var_high)# 寻找界限
epsilon_high, F1_high = select_threshold(y_val_high, p_val_high)# 计算异常数量
anomalies = sum(p_high < epsilon_high)print('Best epsilon found using cross-validation: %e'% epsilon_high)
print('Best F1 on Cross Validation Set:  %f'% F1_high)
print('# Anomalies found: %d'% anomalies)

        运行以上代码,结果为:

Best epsilon found using cross-validation: 1.377229e-18
Best F1 on Cross Validation Set:  0.615385
# Anomalies found: 117

04 总结

     (1)异常检测算法的交叉验证集数据也是有标记的,但不同于监督学习算法的二分类:异常检测的数据中异常类型较多、但数量较少,分布极为不均。

     (2)异常检测的实现算法与维度(特征数)无关,均为4个步骤:参数估计>概率计算>确定阈值>检测异常。

这篇关于吴恩达机器学习 第三课 week1 无监督机器学习(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080379

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa