高光谱图像融合超分辨率、全色锐化PyTorch工具箱--HIFToolBox

本文主要是介绍高光谱图像融合超分辨率、全色锐化PyTorch工具箱--HIFToolBox,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高光谱融合工具箱(HIFToolBox) 旨在收录高光谱和多光谱/全色锐化领域的SOTA算法。收录算法主要分三类:基于模型的算法、自/无监督学习算法,以及监督学习算法。

获取地址 :主页
预训练权重 :HIFTool目前发布了在QB数据集上,所有收录的监督网络的预训练权重。
使用方法

  1. 在配置好PyTorch的环境中打开 Network_training.py.
  2. 选择算法类型 > 0:包括模型(Model),1:无监督(unsupervised), 2:监督(supervised)。如下图所示,case_lst[0]中的0即表示基于模型的方法。
    case_lst = ['model','unsupervised','supervised']case = case_lst[0]Fusion  = ModeSelection(case)
  1. 选择方法 > 目前HIFToolBox收录了 MoGDCN, Fusformer, PSRT, MSST, DCTransformer, iDaFormer, HySure, HyMS, DBSR, UDALN,uHNTC 。如下图所示,Method = 'HyMS’即表示使用HyMS方法。
    Method = 'HyMS'model, opt = model_generator(Method,'cuda')
  1. 选择数据集 > 目前数据集支持 ChikuseiPaviaXiongAnWDCMQB。对应的数据集可以在*./Multispectral Image Dataset/* 中的解释文档中的链接中下载,放入相应数据集即可。如下图所示, dataset_name = 'chikusei’即表示使用使用Chikusei数据集训练。
    dataset_name = 'chikusei'model_folder = Method + '/' + dataset_name + '/'
  1. 训练

> 监督训练:如下图所示,监督训练在此处设置 批量大小(Batch_size),最大迭代步数( end_epoch),权重保存间隔步数(ckpt_step),以及学习率( lr )。

  # Training SettingBatch_size = 2end_epoch = 2000ckpt_step = 50lr = 1e-4

> 模型优化
如下图所示,基于模型的方法需要传入相机的光谱响应函数(srf),以及点扩散函数(psf)。如果未有该类函数则输入None。

   srf = sio.loadmat('Dataloader_tool/srflib/chikusei_128_4.mat')['R']psf = None
  1. 测试
    打开 Network_eval.py进行监督网络的测试。

这篇关于高光谱图像融合超分辨率、全色锐化PyTorch工具箱--HIFToolBox的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079934

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

安卓玩机工具------小米工具箱扩展工具 小米机型功能拓展

小米工具箱扩展版                     小米工具箱扩展版 iO_Box_Mi_Ext是由@晨钟酱开发的一款适用于小米(MIUI)、多亲(2、2Pro)、多看(多看电纸书)的多功能工具箱。该工具所有功能均可以免root实现,使用前,请打开开发者选项中的“USB调试”  功能特点 【小米工具箱】 1:冻结MIUI全家桶,隐藏状态栏图标,修改下拉通知栏图块数量;冻结

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

AI和新基建赋能智慧工地超融合管理平台解决方案

1. 项目背景与需求 电力行业的工程管理正朝着智慧化发展,但目前仍处于起步阶段。为满足数字化、网络化、智能化的发展需求,需要构建一个高效综合监控平台,实现对电力项目全过程的精益化管控。 2. 综合管理平台的构建 该平台集成了超融合实景监控、安全智能监测、公共安全防范、技术管理、人员管控和绿色施工等多个方面,通过BIM协同优化设计,提升项目质量和进度管理。 3. 安全智能监测的重要性 安全

word转PDF后mathtype公式乱码以及图片分辨率降低等一系列问题|完美解决

word转PDF后mathtype公式乱码以及图片分辨率降低等一系列问题|完美解决 问题描述 最近在投一篇期刊论文,直接提交word文档,当时没有查看提交预览,一审审稿意见全是:公式乱码、公式乱码、乱码啊!!!是我大意了,第二次提交,我就决定将word文档转成PDF后再提交,避免再次出现公式乱码的问题。接着问题又来了,我利用‘文件/导出’或‘文件/另存为’的方式将word转成PDF后,发现公式