ENVI实战—一文搞定监督分类

2024-06-20 23:12

本文主要是介绍ENVI实战—一文搞定监督分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验1:利用ROI建立样本训练集和验证集

目的:学会利用ROI建立计算机分类时的样本集

过程:

①导入影像:打开ENVI,选择“打开→打开为→光学传感器→ESA→Sentinel-2”,将Sentinel-2影像导入到ENVI平台中。

图1

②建立ROI区域:选择ROI工具,在影像中寻找一个包含植被、水体、建筑和道路等主要地物的区域,绘制矩形,建立ROI区域。

图2

③空间裁剪:按照“打开→另存为→另存为ENVI....”,在弹出的窗口中选择“空间裁剪”,导入ROI文件,对整幅Sentinel-2影像进行裁剪,得到子影像。

图3

④绘制训练样本集:点击新建ROI绘制自由形状,按照样本在影像范围内全覆盖,且同一地物不同特征全覆盖,大小样本全覆盖的原则,在影像中各绘制植被、建筑、道路、水体、农田各20个样本,将其另存为Train.xml。(图4)

图4

⑤绘制验证样本集:点击新建ROI,与训练样本集类似,针对水体、植被、田地、建筑、道路等地物,根据与此前的训练样本不重复的原则,各绘制10个验证样本,将结果另存为evaluate.xml。(图5)

图5

⑥计算ROI可分离性:找到工具箱中的工具“感兴趣区”,找到其中的工具“计算ROI可分离性”,导入影像,选择四类样本,进行分离性计算,得到任意两类样本之间的可分离性。

图6

结果:

①如下展示了本次绘制的训练样本集和精度验证集,在空间上尽可能保持不重叠。

图1 左图是训练样本集,右图是精度验证集

②图2展示了建筑、水体、植被和道路之间的分离性,其中,绝大部分地物之间都超过1.9以上,表明两种分离情况较好。而建筑和道路之间的可分离性仅占0.99,由于建筑和道路都是硬化路面,因此二类地物之间难以区分。

图2

实验2:使用最小距离法对影像进行分类

目的:学会使用最小距离法对影像进行分类

过程:

①建立训练样本集和验证样本集:基于实验1的步骤,重新就原影像进行空间裁剪,针对植被、水体、建筑、道路各绘制10个训练样本和验证样本。(实验3和实验4以及实验五采取的均为该幅影像)

②工具箱使用:找到ENVI工具箱中的图像分类工具,选择“监督分类”,选择“最小距离法”工具。

③导入影像:导入裁剪好的监督分类影像,此时ENVI会将该影像作为分类的参考依据,根据最小距离法的分类规则,自动对影像进行分类。

④最小距离法分类:,接着选中实验1中已经备选好的道路、水体、植被、建筑等训练样本集,该数据集为监督分类的参考,设置输出路径。

图1

结果:

图1展示最小距离法的分类结果。从图中可以看出,大部分的地物基于所选的训练样本进行了区分。

图1

实验3使用最大似然法对影像进行分类

目的:学会基于最大似然法对影像进行分类

过程:

①工具箱使用:找到ENVI工具箱中的图像分类工具,选择“监督分类”,选择“最大似然法”工具。

②导入影像:导入裁剪好的监督分类影像,此时ENVI会将该影像作为分类的参考依据,根据最大似然法的分类规则,自动对影像进行分类。

③最小距离法分类:,接着选中实验1中已经备选好的道路、水体、植被、建筑等训练样本集,该数据集为监督分类的参考,设置输出路径。

图2

结果:

图1展示了最大似然法下影像的分类结果,对比原图像,整体的分类效果还是较好的,在颜色的显示上,最大似然法最后显示的颜色相对明亮,对地物的区分度高。

图1

实验4使用支持向量机对影像进行分类

目的:学会基于支持向量机对影像进行分类

过程:

①工具箱使用:找到ENVI工具箱中的图像分类工具,选择“监督分类”,选择“支持向量机”工具。

②导入影像:导入裁剪好的监督分类影像,此时ENVI会将该影像作为分类的参考依据,根据支持向量机的分类规则,自动对影像进行分类。

③最小距离法分类:,接着选中实验1中已经备选好的道路、水体、植被、建筑等训练样本集,该数据集为监督分类的参考,设置输出路径。

图1

结果:

图1展现了支持向量机的分类结果,从分类的结果来看,相较于最大似然法,该影像的分类效果较差,没能很好地将建筑物和道路进行较好地区分,存在较多的错分现象。

图1

实验5使用分类结果进行精度评估

目的:学会对分类结果进行精度评估

过程:

①选择工具箱:在图像分类工具箱下找到“分类后处理”,找到“利用地面真实感兴趣进行混淆矩阵分析”,对影像的分类结果进行整体评估

图1

②样本匹配:在弹出的链接验证样本的窗口中,将水体评估、建筑评估、植被评估、道路评估与水体、建筑、植被、道路一一建立匹配关系。点击确定,即可计算影像的分类效果。依据上述过程对三种方法的结果进行一一对应,得到三种分类的精度评估结果。

图2

结果:

图1展示的最小距离法的精度评估结果,总体精度为91.4096%,其中Kappa系数的结果为0.8526;图2展示的是最大似然法的精度评估结果,总体精度为89.0603%,其中Kappa系数的结果为0.8131;图3展示的是支持向量机的精度评估结果,总体精度为91.5994%,其中Kappa系数的结果为0.8542。从评估结果可以看出,本次监督分类中,使用支持向量机方法得到了最好的分类结果,而最大似然法的分类效果相对较差。

值得注意的是,由于本次用于监督分类的样本仅包含4类地物,因此最终的分类结果中,会存在错分的现象,且由于建筑和道路难以区分,二者无论是从建筑用材还是从空间距离上都具有高度的相似性,以后进行分类时,可以尝试将二者统一,另外,将地物类别扩充,如增加农田,山体等,提高分类与实际影像的匹配程度。

图1

图2

图3

这篇关于ENVI实战—一文搞定监督分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079525

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck