ENVI实战—一文搞定监督分类

2024-06-20 23:12

本文主要是介绍ENVI实战—一文搞定监督分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验1:利用ROI建立样本训练集和验证集

目的:学会利用ROI建立计算机分类时的样本集

过程:

①导入影像:打开ENVI,选择“打开→打开为→光学传感器→ESA→Sentinel-2”,将Sentinel-2影像导入到ENVI平台中。

图1

②建立ROI区域:选择ROI工具,在影像中寻找一个包含植被、水体、建筑和道路等主要地物的区域,绘制矩形,建立ROI区域。

图2

③空间裁剪:按照“打开→另存为→另存为ENVI....”,在弹出的窗口中选择“空间裁剪”,导入ROI文件,对整幅Sentinel-2影像进行裁剪,得到子影像。

图3

④绘制训练样本集:点击新建ROI绘制自由形状,按照样本在影像范围内全覆盖,且同一地物不同特征全覆盖,大小样本全覆盖的原则,在影像中各绘制植被、建筑、道路、水体、农田各20个样本,将其另存为Train.xml。(图4)

图4

⑤绘制验证样本集:点击新建ROI,与训练样本集类似,针对水体、植被、田地、建筑、道路等地物,根据与此前的训练样本不重复的原则,各绘制10个验证样本,将结果另存为evaluate.xml。(图5)

图5

⑥计算ROI可分离性:找到工具箱中的工具“感兴趣区”,找到其中的工具“计算ROI可分离性”,导入影像,选择四类样本,进行分离性计算,得到任意两类样本之间的可分离性。

图6

结果:

①如下展示了本次绘制的训练样本集和精度验证集,在空间上尽可能保持不重叠。

图1 左图是训练样本集,右图是精度验证集

②图2展示了建筑、水体、植被和道路之间的分离性,其中,绝大部分地物之间都超过1.9以上,表明两种分离情况较好。而建筑和道路之间的可分离性仅占0.99,由于建筑和道路都是硬化路面,因此二类地物之间难以区分。

图2

实验2:使用最小距离法对影像进行分类

目的:学会使用最小距离法对影像进行分类

过程:

①建立训练样本集和验证样本集:基于实验1的步骤,重新就原影像进行空间裁剪,针对植被、水体、建筑、道路各绘制10个训练样本和验证样本。(实验3和实验4以及实验五采取的均为该幅影像)

②工具箱使用:找到ENVI工具箱中的图像分类工具,选择“监督分类”,选择“最小距离法”工具。

③导入影像:导入裁剪好的监督分类影像,此时ENVI会将该影像作为分类的参考依据,根据最小距离法的分类规则,自动对影像进行分类。

④最小距离法分类:,接着选中实验1中已经备选好的道路、水体、植被、建筑等训练样本集,该数据集为监督分类的参考,设置输出路径。

图1

结果:

图1展示最小距离法的分类结果。从图中可以看出,大部分的地物基于所选的训练样本进行了区分。

图1

实验3使用最大似然法对影像进行分类

目的:学会基于最大似然法对影像进行分类

过程:

①工具箱使用:找到ENVI工具箱中的图像分类工具,选择“监督分类”,选择“最大似然法”工具。

②导入影像:导入裁剪好的监督分类影像,此时ENVI会将该影像作为分类的参考依据,根据最大似然法的分类规则,自动对影像进行分类。

③最小距离法分类:,接着选中实验1中已经备选好的道路、水体、植被、建筑等训练样本集,该数据集为监督分类的参考,设置输出路径。

图2

结果:

图1展示了最大似然法下影像的分类结果,对比原图像,整体的分类效果还是较好的,在颜色的显示上,最大似然法最后显示的颜色相对明亮,对地物的区分度高。

图1

实验4使用支持向量机对影像进行分类

目的:学会基于支持向量机对影像进行分类

过程:

①工具箱使用:找到ENVI工具箱中的图像分类工具,选择“监督分类”,选择“支持向量机”工具。

②导入影像:导入裁剪好的监督分类影像,此时ENVI会将该影像作为分类的参考依据,根据支持向量机的分类规则,自动对影像进行分类。

③最小距离法分类:,接着选中实验1中已经备选好的道路、水体、植被、建筑等训练样本集,该数据集为监督分类的参考,设置输出路径。

图1

结果:

图1展现了支持向量机的分类结果,从分类的结果来看,相较于最大似然法,该影像的分类效果较差,没能很好地将建筑物和道路进行较好地区分,存在较多的错分现象。

图1

实验5使用分类结果进行精度评估

目的:学会对分类结果进行精度评估

过程:

①选择工具箱:在图像分类工具箱下找到“分类后处理”,找到“利用地面真实感兴趣进行混淆矩阵分析”,对影像的分类结果进行整体评估

图1

②样本匹配:在弹出的链接验证样本的窗口中,将水体评估、建筑评估、植被评估、道路评估与水体、建筑、植被、道路一一建立匹配关系。点击确定,即可计算影像的分类效果。依据上述过程对三种方法的结果进行一一对应,得到三种分类的精度评估结果。

图2

结果:

图1展示的最小距离法的精度评估结果,总体精度为91.4096%,其中Kappa系数的结果为0.8526;图2展示的是最大似然法的精度评估结果,总体精度为89.0603%,其中Kappa系数的结果为0.8131;图3展示的是支持向量机的精度评估结果,总体精度为91.5994%,其中Kappa系数的结果为0.8542。从评估结果可以看出,本次监督分类中,使用支持向量机方法得到了最好的分类结果,而最大似然法的分类效果相对较差。

值得注意的是,由于本次用于监督分类的样本仅包含4类地物,因此最终的分类结果中,会存在错分的现象,且由于建筑和道路难以区分,二者无论是从建筑用材还是从空间距离上都具有高度的相似性,以后进行分类时,可以尝试将二者统一,另外,将地物类别扩充,如增加农田,山体等,提高分类与实际影像的匹配程度。

图1

图2

图3

这篇关于ENVI实战—一文搞定监督分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079525

相关文章

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount