图像解像力:MTF、SFR(一)

2024-06-20 21:38
文章标签 图像 sfr mtf 解像力

本文主要是介绍图像解像力:MTF、SFR(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://www.colorspace.com.cn/kb/2018/06/21/%E5%9B%BE%E5%83%8F%E8%A7%A3%E5%83%8F%E5%8A%9Bmtf%E3%80%81sfr%EF%BC%88%E4%B8%80%EF%BC%89/;

图像解像力:MTF、SFR(一)

基本概念

成像系统的解析力一直是摄像头最关键的指标之一。所有用户拿到一张照片的时候首选看到的是照片清楚不清楚,这里的清楚指的就是解析力。但是如果评价一个成像系统的解析力也是大家一直在探讨的问题。目前主流的办法主要有三种TV line检测、MTF检测以及FR检测。

TV line

TV line主要用于主观测试,也有一些读取TV line的软件如HYRes。但是总体来说没有一个具体的标准。大多数公司是以人的读取为标准。不同人的读取,以及状态的不同都会导致读取值得不稳定。而且如ISO 12233 chart实际上我们读出的线对数只能代表读出位置的状况。尤其中心的TV line跨度很大,很难反映一个成像系统。

MTF

MTF是Modulation Transfer Function的英文简称,中文为调制传递函数。是指调制度随空间频率变化的函数称为调制度传递函数。传递函数最开始是为了说明镜头的能力。在各个摄像头镜头中经常采用MTF描述镜头的MTF曲线,表明镜头的能力。这些曲线是通过理想的测试环境下尽量减少其它系统对镜头的解析力的衰减的情况下测试得出的。但是其实MTF也可以涵盖对整个成像系统的解析力评价。在这里咱们就不多讨论这个问题了,如果有兴趣可以开另外一篇文章讨论。

SFR

SFR是 spatial frequency response (SFR) 主要是用于测量随着空间频率的线条增加对单一影像的所造成影响。简言之SFR就是MTF的另外一种测试方法。这种测试方法在很大程度上精简了测试流程。SFR的最终计算是希望得到MTF曲线。SFR的计算方法和MTF虽然不同但是在结果上是基本一致的。

测量方法

现在我们来看一下传统的MTF是怎么测量出来的,后面我们在正对SFR的原理和MTF的关系进行一些介绍。在以后的文章中我们再介绍一些MTF和SFR测试需要注意的问题。从上面我们知道MTF是描述不同空间频率下的调制函数。那么什么是空间频率呢?通常描述频率的单位是赫兹(Hz)比如50Hz、100MHz之类的。但空间频率的表述习惯用“每毫米线对”(LP/mm),就是每毫米的宽度内有多少线对。没两条线之间的距离,以及线条本身的宽度之比是个定值,目前我国分辨率的标板规定,这个定位公因子是20√10≈1.122等比级数。一般MTF的计算离不开线对。下图就是一张不同频率的线对测试图,可以看到图卡本身黑色和白色的对比是很清楚的。

1

实际拍摄的时候,就像右图图一样频率越高(越细)的线对就越模糊。这就是我们实际拍摄场景中到一定小的纹理的就拍摄不清楚的原因。而MTF的计算就是计算线对间最亮和最暗线对的对比度。实际拍摄的时候,就像上图一样频率越高(越细)的线对就越模糊。这就是我们实际拍摄场景中到一定小的纹理的就拍摄不清楚的原因。而MTF的计算就是计算线对间最亮和最暗线对的对比度。计算公式为:MTF = (最大亮度 – 最小亮度) / (最大亮度 + 最小亮度)

 

0

0

所以MTF的计算不会出现大于1的情况。像右图图表示的这样,当我们测试了很多不同频率下的MTF值。通过将这些值和空间频率进行一一的对照。通过这条曲线我们就能知道现在的成像系统在什么样的空间频率下的对比度如何。

 

 

SFR是怎么测试和计算的呢。首先SFR不需要拍摄不同的空间频率下的线对。它只需要一个黑白的斜边(刀口)即可换算出约略相等于所有空间频率 下的MTF。如何通过一个斜边计算出大家可以去看下ISO12233-2000那篇文档,里面说的很详细。具体的流程如下图:0

 

0

其实简单得来说呢,SFR是通过这条斜边的图进行超采样的到一条更加细腻的黑白变换的直线(ESF)。然后通过这条直线求导得到直线的变化率(LSF)。然后对将这个变化率进行FFT变换就能得到各个频率下的MTF的值。这里面的ESF,LSF,都是什么呢?

 

点扩展函数PSF(Point Spread Function)、线扩展函数LSF(Line Spread Function)和边缘扩展函数ESF(Edge Spread Function)是SFR 计算中的几个重要的概念。点扩展函数PSF是点光源成像后的亮度分布函数,如下图所示,用PSF(X,Y)表示。点扩展函数是中心圆对称的,通常以沿x轴的亮度分布PSF(X,Y)作为成像系统的点扩展函数。

 

 

点扩展函数PSF(Point Spread Function)、线扩展函数LSF(Line Spread Function)和边缘扩展函数ESF(Edge Spread Function)是SFR 计算中的几个重要的概念。点扩展函数PSF是点光源成像后的亮度分布函数,如下图所示,用PSF(X,Y)表示。点扩展函数是中心圆对称的,通常以沿x轴的亮度分布PSF(X,Y)作为成像系统的点扩展函数。

 

0

 当获取点光源像的亮度分布函数PSF(X,Y)后,对其进行二维傅里叶变换即可得MTF (u,v)。因此,从理论上讲,从PSF也是获取MTF的一个方法。但是,在实际的应用中,由于地面点光源强度很弱,此方法一般较少采用。相对于PSF来说,LSF的能量得到了一定程度的加强。SFR计​算MTF就通过ESF来得到LSF然后进行FFT得到MTF各个频率的值的。这几者之间的关系如下图。

 

0

说实话光从这几个数学公式还是不好理解为什么ESF可以求出MTF。换一种角度理解LSF就是一条线上(ESF) 的变化的过称。对于任意一条线由黑变白的过程是由不同频率的黑白线对组成。因此可以反过来通过分析一条线得到这些频率下的 (FFT)。当然这只是一种朴素的理解。后面的文章中会有实际使用的MTF和SFR图卡和测试环境和问题进行进一步讨论

 

0

这篇关于图像解像力:MTF、SFR(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079327

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

超越IP-Adapter!阿里提出UniPortrait,可通过文本定制生成高保真的单人或多人图像。

阿里提出UniPortrait,能根据用户提供的文本描述,快速生成既忠实于原图又能灵活调整的个性化人像,用户甚至可以通过简单的句子来描述多个不同的人物,而不需要一一指定每个人的位置。这种设计大大简化了用户的操作,提升了个性化生成的效率和效果。 UniPortrait以统一的方式定制单 ID 和多 ID 图像,提供高保真身份保存、广泛的面部可编辑性、自由格式的文本描述,并且无需预先确定的布局。

Winfrom中解决图像、文字模糊的方法

1.添加清单 2.将清单中的下面内容取消注释

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。

Matplotlib图像读取和输出及jpg、png格式对比,及透明通道alpha设置

图像像素值 图像像素值一般size为3,也就是通道数,分别代表R,G,B,如果只有单一 一个值则表示灰度值,也就是说一张二维图片,当长和宽都为1080时,那么若是灰度图像,图像尺寸为(1080,1080,1)若是RGB图像则为(1080,1080,3), jpg、png图像格式 jpg图像的灰度值范围和RGB范围为[0,255],数值类型为uint8,也就是无符号整数 png图像的灰度值范

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构