Matlab数学建模实战应用:案例1 - 股票价格预测

2024-06-20 20:28

本文主要是介绍Matlab数学建模实战应用:案例1 - 股票价格预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、问题分析

二、模型选择

三、Matlab代码实现

完整代码示例

四、模型改进

1. 引入更多特征

2. 使用更复杂的模型

3. 模型参数优化

五、实例总结

总结


前言

股票价格预测是金融工程中的重要问题,利用数学建模可以帮助分析和预测股票价格的波动趋势,帮助投资者做出更明智的决策。本文将详细介绍股票价格预测的步骤,包括问题分析、模型选择、Matlab代码实现、模型验证和模型改进。

一、问题分析

  1. 股票价格的波动性
    • 股票价格具有高度的波动性,由多种因素(例如市场需求、公司业绩、经济形势等)共同作用导致。
  2. 影响因素
    • 常见的影响股票价格的因素包括:公司财务报表、行业发展、国家政策、国际经济环境、投资者情绪等。
  3. 预测目标
    • 短期预测:对未来几天或几周的股票价格进行预测,主要为日交易策略提供依据。
    • 中长期预测:对未来几个月或几年内的价格趋势进行预测,辅助长期投资决策。

二、模型选择

  1. 线性回归模型

    • 假设股票价格与某些因子(如技术指标)之间的关系是线性的。线性回归模型简单易用,但对复杂的股票价格波动可能无能为力。
  2. 时间序列模型

    • 自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)等,用于处理具有时间依赖性的序列数据。
  3. 机器学习模型

    • 支持向量机(SVM)、LSTM神经网络等,能够捕捉股票价格的非线性关系和复杂的波动模式。

本次实例将选择时间序列模型(ARIMA)进行股票价格预测。

三、Matlab代码实现

以下是一个使用ARIMA模型进行股票价格预测的完整代码示例。

  1. 导入数据
    • 我们假设股票数据(包含日期和收盘价)存储在stock_data.csv文件中。

    % 读取股票数据data = readtable('stock_data.csv');dates = data.Date;prices = data.Close;% 将日期转换为 MATLAB 日期格式dates = datetime(dates, 'InputFormat', 'yyyy-MM-dd');% 绘制收盘价时序图figure;plot(dates, prices);title('Stock Closing Prices');xlabel('Date');ylabel('Closing Price');grid on;

  1. 数据预处理
    • 检查和处理缺失值,并拆分数据集为训练集和测试集。

    % 检查缺失值if any(ismissing(prices))disp('存在缺失值,将其移除');data = rmmissing(data);dates = data.Date;prices = data.Close;end% 拆分数据集为训练集和测试集(70% 训练,30% 测试)n = length(prices);train_size = round(0.7 * n);train_prices = prices(1:train_size);test_prices = prices(train_size + 1:end);test_dates = dates(train_size + 1:end);

  1. 模型训练
    • 使用训练集数据训练ARIMA模型。

    % 训练 ARIMA 模型model = arima('Constant', 0, 'D', 1, 'Seasonality', 12, 'MALags', 1, 'SMALags', 12);arima_model = estimate(model, train_prices);

  1. 模型预测和验证
    • 使用训练好的模型进行预测,并与测试集数据进行比较。

    % 预测未来价格[forecast_prices, ~, forecast_CI] = forecast(arima_model, length(test_prices), 'Y0', train_prices);% 绘制预测结果figure;hold on;plot(test_dates, test_prices, 'b', 'DisplayName', 'Actual Prices');plot(test_dates, forecast_prices, 'r', 'DisplayName', 'Forecasted Prices');plot(test_dates, forecast_CI(:, 1), 'k--', 'DisplayName', '95% CI Lower');plot(test_dates, forecast_CI(:, 2), 'k--', 'DisplayName', '95% CI Upper');title('Stock Price Prediction Using ARIMA');xlabel('Date');ylabel('Price');legend('show');grid on;hold off;

  1. 计算预测误差
    • 计算模型预测的均方误差(MSE)和平均绝对误差(MAE)等。

    % 计算 MAE 和 MSEMAE = mean(abs(forecast_prices - test_prices));MSE = mean((forecast_prices - test_prices).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);disp(['Mean Squared Error: ', num2str(MSE)]);

完整代码示例

% 读取股票数据
data = readtable('stock_data.csv');
dates = data.Date;
prices = data.Close;% 将日期转换为 MATLAB 日期格式
dates = datetime(dates, 'InputFormat', 'yyyy-MM-dd');% 绘制收盘价时序图
figure;
plot(dates, prices);
title('Stock Closing Prices');
xlabel('Date');
ylabel('Closing Price');
grid on;% 检查缺失值
if any(ismissing(prices))disp('存在缺失值,将其移除');data = rmmissing(data);dates = data.Date;prices = data.Close;
end% 拆分数据集为训练集和测试集(70% 训练,30% 测试)
n = length(prices);
train_size = round(0.7 * n);
train_prices = prices(1:train_size);
test_prices = prices(train_size + 1:end);
test_dates = dates(train_size + 1:end);% 训练 ARIMA 模型
model = arima('Constant', 0, 'D', 1, 'Seasonality', 12, 'MALags', 1, 'SMALags', 12);
arima_model = estimate(model, train_prices);% 预测未来价格
[forecast_prices, ~, forecast_CI] = forecast(arima_model, length(test_prices), 'Y0', train_prices);% 绘制预测结果
figure;
hold on;
plot(test_dates, test_prices, 'b', 'DisplayName', 'Actual Prices');
plot(test_dates, forecast_prices, 'r', 'DisplayName', 'Forecasted Prices');
plot(test_dates, forecast_CI(:, 1), 'k--', 'DisplayName', '95% CI Lower');
plot(test_dates, forecast_CI(:, 2), 'k--', 'DisplayName', '95% CI Upper');
title('Stock Price Prediction Using ARIMA');
xlabel('Date');
ylabel('Price');
legend('show');
grid on;
hold off;% 计算 MAE 和 MSE
MAE = mean(abs(forecast_prices - test_prices));
MSE = mean((forecast_prices - test_prices).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);
disp(['Mean Squared Error: ', num2str(MSE)]);

四、模型改进

在初步模型的基础上,我们可以通过引入更多特征、使用更复杂的模型和优化模型参数来进一步改进股票价格预测模型,提高预测的精度。

1. 引入更多特征

除了使用历史价格数据,我们还可以引入一些技术指标和宏观经济指标作为特征输入到模型中。这些额外特征可以提供更全面的信息,有助于提高模型的预测能力。

  1. 技术指标
    • 移动平均线(MA)、指数平滑移动平均线(EMA)、相对强弱指数(RSI)等。

    % 计算技术指标ma = movmean(prices, 10);  % 10 日移动平均线rsi = rsindex(prices, 14); % 14 日相对强弱指数% 合并特征features = [prices, ma, rsi];

  1. 宏观经济指标
    • 例如利率、通货膨胀率、GDP 增长率等。

    % 假设我们有宏观经济数据(已经加载到变量 macro_data 中)% 合并特征features = [prices, macro_data];

2. 使用更复杂的模型

简单的时间序列模型(如 ARIMA)可能无法捕捉股票价格的复杂波动模式。我们可以考虑使用更复杂的模型,如 GARCH 模型和 LSTM 神经网络。

  1. GARCH 模型
    • 用于建模金融时间序列的波动率。

    % 定义 GARCH 模型model = garch(1, 1);% 估计模型参数garch_model = estimate(model, train_prices);% 预测未来价格波动率[v, ~] = forecast(garch_model, length(test_prices), 'Y0', train_prices);

  1. LSTM 神经网络
    • 强大的深度学习模型,可以捕捉时间序列的长短期依赖关系。

    % 定义 LSTM 神经网络layers = [sequenceInputLayer(1)lstmLayer(100, 'OutputMode', 'sequence')fullyConnectedLayer(1)regressionLayer];% 设置训练选项options = trainingOptions('adam', ...'MaxEpochs', 250, ...'GradientThreshold', 1, ...'InitialLearnRate', 0.005, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropFactor', 0.2, ...'LearnRateDropPeriod', 125, ...'Verbose', 0, ...'Plots', 'training-progress');% 训练 LSTM 网络train_prices_sequence = reshape(train_prices, [numel(train_prices), 1, 1]);lstm_model = trainNetwork(train_prices_sequence, train_prices_sequence, layers, options);% 预测未来价格test_prices_sequence = reshape(test_prices, [numel(test_prices), 1, 1]);forecast_prices = predict(lstm_model, test_prices_sequence);

3. 模型参数优化

通过使用交叉验证、网格搜索等方法对模型参数进行优化,以找到最佳的参数组合。

  1. 交叉验证
    • 交叉验证用于评估模型的表现,并选择最佳模型参数。

    % 使用交叉验证选择最佳 ARIMA 模型参数best_model = [];best_mse = Inf;for p = 0:5for q = 0:5for d = 0:2trymodel = arima('Constant', 0, 'ARLags', p, 'D', d, 'MALags', q);arima_model = estimate(model, train_prices);forecast_prices = forecast(arima_model, length(test_prices), 'Y0', train_prices);mse = mean((forecast_prices - test_prices).^2);if mse < best_msebest_mse = mse;best_model = arima_model;endendendendend

  1. 网格搜索
    • 网格搜索通过在参数空间中进行穷举搜索,找到最佳参数组合。

    % 定义参数空间paramGrid = struct('NumHiddenUnits', [50, 100], 'InitialLearnRate', [0.001, 0.005]);% 初始化最优参数和最小误差bestParams = [];bestMSE = Inf;% 网格搜索参数for hiddenUnits = paramGrid.NumHiddenUnitsfor learnRate = paramGrid.InitialLearnRate% 设置 LSTM 网络和训练选项layers = [sequenceInputLayer(1)lstmLayer(hiddenUnits, 'OutputMode', 'sequence')fullyConnectedLayer(1)regressionLayer];options = trainingOptions('adam', ...'MaxEpochs', 250, ...'GradientThreshold', 1, ...'InitialLearnRate', learnRate, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropFactor', 0.2, ...'LearnRateDropPeriod', 125, ...'Verbose', 0);% 训练 LSTM 网络lstm_model = trainNetwork(train_prices_sequence, train_prices_sequence, layers, options);% 预测未来价格forecast_prices = predict(lstm_model, test_prices_sequence);mse = mean((forecast_prices - test_prices).^2);% 更新最优参数if mse < bestMSEbestMSE = mse;bestParams = struct('NumHiddenUnits', hiddenUnits, 'InitialLearnRate', learnRate);endendend

以下是改进模型的方法及其示例总结:

方法说明示例代码
引入更多特征使用技术指标和宏观经济指标作为额外特征输入[prices, ma, rsi, macro_data]
使用更复杂的模型尝试使用更复杂的时间序列模型(如GARCH)和深度学习模型(如LSTM)garchlstmLayer
模型参数优化使用交叉验证和网格搜索找到最佳模型参数组合for p = 0:5, q = 0:5, ...

五、实例总结

通过上述步骤,我们展示了如何使用 ARIMA 模型进行股票价格预测的全过程。接着,进一步改进模型,包括引入更多特征、使用更复杂的模型和优化参数的方法。以下是总结:

步骤说明示例代码
问题分析分析股票价格的波动性及其影响因素-
模型选择选择合适的预测模型(如ARIMA、机器学习模型等)-
数据导入从CSV文件中导入股票数据data = readtable('stock_data.csv');
数据预处理检查和处理缺失值,拆分训练集和测试集train_prices = prices(1:train_size);
模型训练使用训练集数据训练ARIMA模型model = arima(...);
模型预测和验证使用模型进行预测,并与测试集数据进行比较[forecast_prices, ~, forecast_CI] = ...
模型改进引入更多特征、使用更复杂的模型、优化模型参数garchlstmLayercross-validation

总结

本文详细介绍了股票价格预测的步骤,包括问题分析、模型选择、Matlab代码实现、模型验证和模型改进。通过实际案例,展示了如何使用 ARIMA 模型进行股票价格预测,并详细解释了如何通过引入更多特征、使用更复杂的模型和优化参数来改进预测模型。

这篇关于Matlab数学建模实战应用:案例1 - 股票价格预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079172

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount