Matlab数学建模实战应用:案例1 - 股票价格预测

2024-06-20 20:28

本文主要是介绍Matlab数学建模实战应用:案例1 - 股票价格预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、问题分析

二、模型选择

三、Matlab代码实现

完整代码示例

四、模型改进

1. 引入更多特征

2. 使用更复杂的模型

3. 模型参数优化

五、实例总结

总结


前言

股票价格预测是金融工程中的重要问题,利用数学建模可以帮助分析和预测股票价格的波动趋势,帮助投资者做出更明智的决策。本文将详细介绍股票价格预测的步骤,包括问题分析、模型选择、Matlab代码实现、模型验证和模型改进。

一、问题分析

  1. 股票价格的波动性
    • 股票价格具有高度的波动性,由多种因素(例如市场需求、公司业绩、经济形势等)共同作用导致。
  2. 影响因素
    • 常见的影响股票价格的因素包括:公司财务报表、行业发展、国家政策、国际经济环境、投资者情绪等。
  3. 预测目标
    • 短期预测:对未来几天或几周的股票价格进行预测,主要为日交易策略提供依据。
    • 中长期预测:对未来几个月或几年内的价格趋势进行预测,辅助长期投资决策。

二、模型选择

  1. 线性回归模型

    • 假设股票价格与某些因子(如技术指标)之间的关系是线性的。线性回归模型简单易用,但对复杂的股票价格波动可能无能为力。
  2. 时间序列模型

    • 自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)等,用于处理具有时间依赖性的序列数据。
  3. 机器学习模型

    • 支持向量机(SVM)、LSTM神经网络等,能够捕捉股票价格的非线性关系和复杂的波动模式。

本次实例将选择时间序列模型(ARIMA)进行股票价格预测。

三、Matlab代码实现

以下是一个使用ARIMA模型进行股票价格预测的完整代码示例。

  1. 导入数据
    • 我们假设股票数据(包含日期和收盘价)存储在stock_data.csv文件中。

    % 读取股票数据data = readtable('stock_data.csv');dates = data.Date;prices = data.Close;% 将日期转换为 MATLAB 日期格式dates = datetime(dates, 'InputFormat', 'yyyy-MM-dd');% 绘制收盘价时序图figure;plot(dates, prices);title('Stock Closing Prices');xlabel('Date');ylabel('Closing Price');grid on;

  1. 数据预处理
    • 检查和处理缺失值,并拆分数据集为训练集和测试集。

    % 检查缺失值if any(ismissing(prices))disp('存在缺失值,将其移除');data = rmmissing(data);dates = data.Date;prices = data.Close;end% 拆分数据集为训练集和测试集(70% 训练,30% 测试)n = length(prices);train_size = round(0.7 * n);train_prices = prices(1:train_size);test_prices = prices(train_size + 1:end);test_dates = dates(train_size + 1:end);

  1. 模型训练
    • 使用训练集数据训练ARIMA模型。

    % 训练 ARIMA 模型model = arima('Constant', 0, 'D', 1, 'Seasonality', 12, 'MALags', 1, 'SMALags', 12);arima_model = estimate(model, train_prices);

  1. 模型预测和验证
    • 使用训练好的模型进行预测,并与测试集数据进行比较。

    % 预测未来价格[forecast_prices, ~, forecast_CI] = forecast(arima_model, length(test_prices), 'Y0', train_prices);% 绘制预测结果figure;hold on;plot(test_dates, test_prices, 'b', 'DisplayName', 'Actual Prices');plot(test_dates, forecast_prices, 'r', 'DisplayName', 'Forecasted Prices');plot(test_dates, forecast_CI(:, 1), 'k--', 'DisplayName', '95% CI Lower');plot(test_dates, forecast_CI(:, 2), 'k--', 'DisplayName', '95% CI Upper');title('Stock Price Prediction Using ARIMA');xlabel('Date');ylabel('Price');legend('show');grid on;hold off;

  1. 计算预测误差
    • 计算模型预测的均方误差(MSE)和平均绝对误差(MAE)等。

    % 计算 MAE 和 MSEMAE = mean(abs(forecast_prices - test_prices));MSE = mean((forecast_prices - test_prices).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);disp(['Mean Squared Error: ', num2str(MSE)]);

完整代码示例

% 读取股票数据
data = readtable('stock_data.csv');
dates = data.Date;
prices = data.Close;% 将日期转换为 MATLAB 日期格式
dates = datetime(dates, 'InputFormat', 'yyyy-MM-dd');% 绘制收盘价时序图
figure;
plot(dates, prices);
title('Stock Closing Prices');
xlabel('Date');
ylabel('Closing Price');
grid on;% 检查缺失值
if any(ismissing(prices))disp('存在缺失值,将其移除');data = rmmissing(data);dates = data.Date;prices = data.Close;
end% 拆分数据集为训练集和测试集(70% 训练,30% 测试)
n = length(prices);
train_size = round(0.7 * n);
train_prices = prices(1:train_size);
test_prices = prices(train_size + 1:end);
test_dates = dates(train_size + 1:end);% 训练 ARIMA 模型
model = arima('Constant', 0, 'D', 1, 'Seasonality', 12, 'MALags', 1, 'SMALags', 12);
arima_model = estimate(model, train_prices);% 预测未来价格
[forecast_prices, ~, forecast_CI] = forecast(arima_model, length(test_prices), 'Y0', train_prices);% 绘制预测结果
figure;
hold on;
plot(test_dates, test_prices, 'b', 'DisplayName', 'Actual Prices');
plot(test_dates, forecast_prices, 'r', 'DisplayName', 'Forecasted Prices');
plot(test_dates, forecast_CI(:, 1), 'k--', 'DisplayName', '95% CI Lower');
plot(test_dates, forecast_CI(:, 2), 'k--', 'DisplayName', '95% CI Upper');
title('Stock Price Prediction Using ARIMA');
xlabel('Date');
ylabel('Price');
legend('show');
grid on;
hold off;% 计算 MAE 和 MSE
MAE = mean(abs(forecast_prices - test_prices));
MSE = mean((forecast_prices - test_prices).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);
disp(['Mean Squared Error: ', num2str(MSE)]);

四、模型改进

在初步模型的基础上,我们可以通过引入更多特征、使用更复杂的模型和优化模型参数来进一步改进股票价格预测模型,提高预测的精度。

1. 引入更多特征

除了使用历史价格数据,我们还可以引入一些技术指标和宏观经济指标作为特征输入到模型中。这些额外特征可以提供更全面的信息,有助于提高模型的预测能力。

  1. 技术指标
    • 移动平均线(MA)、指数平滑移动平均线(EMA)、相对强弱指数(RSI)等。

    % 计算技术指标ma = movmean(prices, 10);  % 10 日移动平均线rsi = rsindex(prices, 14); % 14 日相对强弱指数% 合并特征features = [prices, ma, rsi];

  1. 宏观经济指标
    • 例如利率、通货膨胀率、GDP 增长率等。

    % 假设我们有宏观经济数据(已经加载到变量 macro_data 中)% 合并特征features = [prices, macro_data];

2. 使用更复杂的模型

简单的时间序列模型(如 ARIMA)可能无法捕捉股票价格的复杂波动模式。我们可以考虑使用更复杂的模型,如 GARCH 模型和 LSTM 神经网络。

  1. GARCH 模型
    • 用于建模金融时间序列的波动率。

    % 定义 GARCH 模型model = garch(1, 1);% 估计模型参数garch_model = estimate(model, train_prices);% 预测未来价格波动率[v, ~] = forecast(garch_model, length(test_prices), 'Y0', train_prices);

  1. LSTM 神经网络
    • 强大的深度学习模型,可以捕捉时间序列的长短期依赖关系。

    % 定义 LSTM 神经网络layers = [sequenceInputLayer(1)lstmLayer(100, 'OutputMode', 'sequence')fullyConnectedLayer(1)regressionLayer];% 设置训练选项options = trainingOptions('adam', ...'MaxEpochs', 250, ...'GradientThreshold', 1, ...'InitialLearnRate', 0.005, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropFactor', 0.2, ...'LearnRateDropPeriod', 125, ...'Verbose', 0, ...'Plots', 'training-progress');% 训练 LSTM 网络train_prices_sequence = reshape(train_prices, [numel(train_prices), 1, 1]);lstm_model = trainNetwork(train_prices_sequence, train_prices_sequence, layers, options);% 预测未来价格test_prices_sequence = reshape(test_prices, [numel(test_prices), 1, 1]);forecast_prices = predict(lstm_model, test_prices_sequence);

3. 模型参数优化

通过使用交叉验证、网格搜索等方法对模型参数进行优化,以找到最佳的参数组合。

  1. 交叉验证
    • 交叉验证用于评估模型的表现,并选择最佳模型参数。

    % 使用交叉验证选择最佳 ARIMA 模型参数best_model = [];best_mse = Inf;for p = 0:5for q = 0:5for d = 0:2trymodel = arima('Constant', 0, 'ARLags', p, 'D', d, 'MALags', q);arima_model = estimate(model, train_prices);forecast_prices = forecast(arima_model, length(test_prices), 'Y0', train_prices);mse = mean((forecast_prices - test_prices).^2);if mse < best_msebest_mse = mse;best_model = arima_model;endendendendend

  1. 网格搜索
    • 网格搜索通过在参数空间中进行穷举搜索,找到最佳参数组合。

    % 定义参数空间paramGrid = struct('NumHiddenUnits', [50, 100], 'InitialLearnRate', [0.001, 0.005]);% 初始化最优参数和最小误差bestParams = [];bestMSE = Inf;% 网格搜索参数for hiddenUnits = paramGrid.NumHiddenUnitsfor learnRate = paramGrid.InitialLearnRate% 设置 LSTM 网络和训练选项layers = [sequenceInputLayer(1)lstmLayer(hiddenUnits, 'OutputMode', 'sequence')fullyConnectedLayer(1)regressionLayer];options = trainingOptions('adam', ...'MaxEpochs', 250, ...'GradientThreshold', 1, ...'InitialLearnRate', learnRate, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropFactor', 0.2, ...'LearnRateDropPeriod', 125, ...'Verbose', 0);% 训练 LSTM 网络lstm_model = trainNetwork(train_prices_sequence, train_prices_sequence, layers, options);% 预测未来价格forecast_prices = predict(lstm_model, test_prices_sequence);mse = mean((forecast_prices - test_prices).^2);% 更新最优参数if mse < bestMSEbestMSE = mse;bestParams = struct('NumHiddenUnits', hiddenUnits, 'InitialLearnRate', learnRate);endendend

以下是改进模型的方法及其示例总结:

方法说明示例代码
引入更多特征使用技术指标和宏观经济指标作为额外特征输入[prices, ma, rsi, macro_data]
使用更复杂的模型尝试使用更复杂的时间序列模型(如GARCH)和深度学习模型(如LSTM)garchlstmLayer
模型参数优化使用交叉验证和网格搜索找到最佳模型参数组合for p = 0:5, q = 0:5, ...

五、实例总结

通过上述步骤,我们展示了如何使用 ARIMA 模型进行股票价格预测的全过程。接着,进一步改进模型,包括引入更多特征、使用更复杂的模型和优化参数的方法。以下是总结:

步骤说明示例代码
问题分析分析股票价格的波动性及其影响因素-
模型选择选择合适的预测模型(如ARIMA、机器学习模型等)-
数据导入从CSV文件中导入股票数据data = readtable('stock_data.csv');
数据预处理检查和处理缺失值,拆分训练集和测试集train_prices = prices(1:train_size);
模型训练使用训练集数据训练ARIMA模型model = arima(...);
模型预测和验证使用模型进行预测,并与测试集数据进行比较[forecast_prices, ~, forecast_CI] = ...
模型改进引入更多特征、使用更复杂的模型、优化模型参数garchlstmLayercross-validation

总结

本文详细介绍了股票价格预测的步骤,包括问题分析、模型选择、Matlab代码实现、模型验证和模型改进。通过实际案例,展示了如何使用 ARIMA 模型进行股票价格预测,并详细解释了如何通过引入更多特征、使用更复杂的模型和优化参数来改进预测模型。

这篇关于Matlab数学建模实战应用:案例1 - 股票价格预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079172

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什