【C++】高斯消元算法

2024-06-20 20:18
文章标签 算法 c++ 高斯消

本文主要是介绍【C++】高斯消元算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵初等行变换法则

  1. 任一行可以与另一行进行加减。
  2. 任一行可以乘或除以一个非零常数(除其实就是乘一个倒数)。
  3. 任两行可以交换位置。

线性方程组

形如
a 1 , 1 x 1 + a 1 , 2 x 2 + ⋯ + a 1 , n x n = b 1 a 2 , 1 x 1 + a 2 , 2 x 2 + ⋯ + a 2 , n x n = b n ⋮ a n , 1 x 1 + a n , 2 x 2 + ⋯ + a n , n x n = b n a_{1,1}x_1+a_{1,2}x_2+\dots+a_{1,n}x_n=b_1 \\ a_{2,1}x_1+a_{2,2}x_2+\dots+a_{2,n}x_n=b_n \\ \vdots \\ a_{n,1}x_1+a_{n,2}x_2+\dots+a_{n,n}x_n=b_n a1,1x1+a1,2x2++a1,nxn=b1a2,1x1+a2,2x2++a2,nxn=bnan,1x1+an,2x2++an,nxn=bn
其中,系数矩阵为
A = ( a 1 , 1 a 1 , 2 … a 1 , n a 2 , 1 a 2 , 2 … a 2 , n ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 … a n , n ) A=\left( \begin{matrix} &a_{1,1} &a_{1,2} &\dots &a_{1,n} \\ &a_{2,1} &a_{2,2} &\dots &a_{2,n} \\ &\vdots &\vdots &\vdots &\vdots \\ &a_{n,1} &a_{n,2} &\dots &a_{n,n} \\ \end{matrix} \right) A=a1,1a2,1an,1a1,2a2,2an,2a1,na2,nan,n
右值向量(矩阵)为
B = ( b 1 b 2 ⋮ b n ) B=\left ( \begin{matrix} b_1\\ b_2\\ \vdots\\ b_n \end{matrix} \right) B=b1b2bn
解向量为
X = ( x 1 x 2 ⋮ x n ) X=\left ( \begin{matrix} x_1\\ x_2\\ \vdots\\ x_n \end{matrix} \right) X=x1x2xn
因此,方程组可表示为
A X = B AX=B AX=B

矩阵的秩

  • 矩阵可由初等行变换化为行最简形矩阵,所谓行最简型矩阵,即在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的其余元素全为零,就称该矩阵为行最简形矩阵。矩阵的秩就是行最简形矩阵非零行的个数,以 r ( M ) r(M) r(M)来表示矩阵 M M M的秩。如:
    M = ( 1 0 0 − 1 0 1 0 − 2 0 0 1 2 ) M=\left (\begin{matrix} &1 &0 &0 &-1 \\ &0 &1 &0 &-2 \\ &0 &0 &1 &2 \end{matrix} \right) M=100010001122
    r ( M ) = 3 r(M)=3 r(M)=3

高斯消元法(列主元法)

  • 其实就是线性代数中的矩阵行化简算法。

思路

要解上述方程组,需要引入增广矩阵

( A ⋮ b ) = ( a 1 , 1 a 1 , 2 … a 1 , n b 1 a 2 , 1 a 2 , 2 … a 2 , n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 … a n , n b n ) (A\vdots b)= \left( \begin{matrix} &a_{1,1} &a_{1,2} &\dots &a_{1,n} &b_1 \\ &a_{2,1} &a_{2,2} &\dots &a_{2,n} &b_2 \\ &\vdots &\vdots &\vdots &\vdots &\vdots \\ &a_{n,1} &a_{n,2} &\dots &a_{n,n} &b_n \\ \end{matrix} \right) (Ab)=a1,1a2,1an,1a1,2a2,2an,2a1,na2,nan,nb1b2bn

其实就是在系数矩阵 A A A右侧添加右值向量 b b b

  1. r ( A ) = r ( A ⋮ b ) r(A)=r(A\vdots b) r(A)=r(Ab) r ( A ) = n r(A)=n r(A)=n,则方程组有唯一解
  2. r ( A ) = r ( A ⋮ b ) r(A)=r(A\vdots b) r(A)=r(Ab) r ( A ) ≠ n r(A)\ne n r(A)=n,则方程组有无穷个解
  3. r ( A ) ≠ r ( A ⋮ b ) r(A)\ne r(A\vdots b) r(A)=r(Ab),则方程组无解

算法思想

  • 假设行数为 1 ∼ n 1 \sim n 1n,列数为 1 ∼ n + 1 1\sim n+1 1n+1

化简矩阵

  1. 初始化当前行为 i = 1 i=1 i=1
  2. i ∼ n i\sim n in行中寻找绝对值最大的 a i i a_{ii} aii所在行 j j j (最大系数可减小误差)
  3. a j j = 0 a_{jj}=0 ajj=0则说明 r ( A ) ≠ n r(A)\ne n r(A)=n,无唯一解,返回 f a l s e false false
  4. 交换第 i , j i,j i,j两行,使得增广矩阵保持为上三角矩阵
  5. i i i行所有元素除以系数 a i i a_{ii} aii
  6. i = n i=n i=n说明这是末尾行,结束矩阵化简,在求解向量后返回1
  7. i + 1 ∼ n i+1\sim n i+1n行,减去 a i + 1 , i a_{i+1,i} ai+1,i倍第 i i i行,消除其余行的第 i i i列系数
  8. i = i + 1 i=i+1 i=i+1,跳回到第 2 2 2步,寻找下一行

求解向量

此时矩阵为
( A ⋮ b ) = ( 1 a 1 , 2 … a 1 , n b 1 1 … a 2 , n b 2 ⋱ ⋮ 1 b n ) (A\vdots b)= \left( \begin{matrix} &1 &a_{1,2} &\dots &a_{1,n} &b_1 \\ & &1 &\dots &a_{2,n} &b_2 \\ & & &\ddots & &\vdots \\ & & & &1 &b_n \\ \end{matrix} \right) (Ab)=1a1,21a1,na2,n1b1b2bn

x 1 + a 1 , 2 x 2 + ⋯ + a 1 , n x n = b 1 x 2 + a 2 , 3 x 3 + ⋯ + a 2 , n x n = b 2 x n = b n x_1+a_{1,2}x_2+\dots +a_{1,n}x_n=b_1 \\ x_2+a_{2,3}x_3+\dots +a_{2,n}x_n=b_2 \\ x_n=b_n x1+a1,2x2++a1,nxn=b1x2+a2,3x3++a2,nxn=b2xn=bn
此时有
x n = b n x n − 1 = b n − 1 − a n − 1 , n ∗ b n ⋮ x 1 = b 1 − a 1 , n ∗ b n − a 1 , n − 1 ∗ b n − 1 − … a 1 , 2 a 2 x_n=b_n \\ x_{n-1}=b_{n-1}-a_{n-1,n}*b_n \\ \vdots \\ x_1=b_{1}-a_{1,n}*b_n-a_{1,n-1}*b_{n-1}-\dots a_{1,2}a_2 xn=bnxn1=bn1an1,nbnx1=b1a1,nbna1,n1bn1a1,2a2
解向量为
X = ( x 1 x 2 ⋮ x n ) X=\left( \begin{matrix} x_1\\ x_2\\ \vdots\\ x_n \end{matrix} \right) X=x1x2xn

算法模板

int gauss(double num[100][101],int n,double x[]){for(int i=0;i<n;i++){//循环n次,第i轮循环行为i~n-1,列为i~nint maxRow=i;//maxRow记录系数最大的行,作为被减行减小误差for(int j=i+1;j<n;j++){if(abs(num[j][i])>abs(num[maxRow][i])) maxRow=j;}if(abs(num[maxRow][i])<zero) return 0;//x系数为0则增广矩阵无唯一解,返回0if(maxRow!=i){//交换最大行到i行,使之保持为上三角矩阵for(int j=i;j<n+1;j++){swap(num[maxRow][j],num[i][j]);}}for(int j=n;j>=i;j--){//化最大行第一个系数为1num[i][j]/=num[i][i];//从后向前除以系数,否则需要临时变量记录[i][i]的系数}for(int j=i+1;j<n;j++){//被系数行减去for(int k=n;k>=i;k--){num[j][k]-=num[j][i]*num[i][k];//减去了系数行乘以对应系数}}}for(int i=n-1;i>=0;i--){//逆向求解向量x[i]=num[i][n];//赋初值使得ax=bfor(int j=i+1;j<n;j++)x[i]-=num[i][j]*x[j];//减去其他解向量}return 1;
}

例题

题目链接

题目背景

Gauss消元

题目描述

给定一个线性方程组,对其求解

输入格式

第一行,一个正整数 n n n
第二至 n + 1 n+1 n+1行,每行 n + 1 n+1 n+1个整数,为 a 1 , a 2 ⋯ a n a_1, a_2 \cdots a_n a1,a2an b b b,代表一组方程。

输出格式

n n n行,每行一个数,第 i i i行为 x i x_i xi(保留2位小数)
如果不存在唯一解,在第一行输出"No Solution".

输入输出样例

  • 输入 #1
3
1 3 4 5
1 4 7 3
9 3 2 2
  • 输出 #1
-0.97
5.18
-2.39
  • 说明/提示

1 ≤ n ≤ 100 , ∣ a i ∣ ≤ 10 4 , ∣ b ∣ ≤ 10 4 1 \leq n \leq 100, \left | a_i \right| \leq {10}^4 , \left |b \right| \leq {10}^4 1n100,ai104,b104

AC代码

#include <iostream>
#include <algorithm>
#define zero 1e-10
using namespace std;
int gauss(double num[100][101],int n,double x[]){for(int i=0;i<n;i++){//循环n次,第i轮循环行为i~n-1,列为i~nint maxRow=i;//maxRow记录系数最大的行,作为被减行减小误差for(int j=i+1;j<n;j++){if(abs(num[j][i])>abs(num[maxRow][i])) maxRow=j;}if(abs(num[maxRow][i])<zero) return 0;//x系数为0则增广矩阵无唯一解,返回0if(maxRow!=i){//交换最大行到i行,使之保持为上三角矩阵for(int j=i;j<n+1;j++){swap(num[maxRow][j],num[i][j]);}}for(int j=n;j>=i;j--){//化最大行第一个系数为1num[i][j]/=num[i][i];//从后向前除以系数,否则需要临时变量记录[i][i]的系数}for(int j=i+1;j<n;j++){//被系数行减去for(int k=n;k>=i;k--){num[j][k]-=num[j][i]*num[i][k];//减去了系数行乘以对应系数}}}for(int i=n-1;i>=0;i--){//逆向求解向量x[i]=num[i][n];//赋初值使得ax=bfor(int j=i+1;j<n;j++)x[i]-=num[i][j]*x[j];//减去其他解向量}return 1;
}
int main(){int n;double num[100][101];//矩阵大小是n*n+1double x[100];//存储解向量xscanf("%d",&n);for(int i=0;i<n;i++){for(int j=0;j<n+1;j++){scanf("%lf",&num[i][j]);}}if(gauss(num,n,x)){for(int i=0;i<n;i++){printf("%.2lf\n",x[i]);}}else{printf("No Solution");}return 0;
}
/*
3
1 3 4 5
1 4 7 3
9 3 2 2
*/

这篇关于【C++】高斯消元算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079148

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�