【C++】高斯消元算法

2024-06-20 20:18
文章标签 算法 c++ 高斯消

本文主要是介绍【C++】高斯消元算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵初等行变换法则

  1. 任一行可以与另一行进行加减。
  2. 任一行可以乘或除以一个非零常数(除其实就是乘一个倒数)。
  3. 任两行可以交换位置。

线性方程组

形如
a 1 , 1 x 1 + a 1 , 2 x 2 + ⋯ + a 1 , n x n = b 1 a 2 , 1 x 1 + a 2 , 2 x 2 + ⋯ + a 2 , n x n = b n ⋮ a n , 1 x 1 + a n , 2 x 2 + ⋯ + a n , n x n = b n a_{1,1}x_1+a_{1,2}x_2+\dots+a_{1,n}x_n=b_1 \\ a_{2,1}x_1+a_{2,2}x_2+\dots+a_{2,n}x_n=b_n \\ \vdots \\ a_{n,1}x_1+a_{n,2}x_2+\dots+a_{n,n}x_n=b_n a1,1x1+a1,2x2++a1,nxn=b1a2,1x1+a2,2x2++a2,nxn=bnan,1x1+an,2x2++an,nxn=bn
其中,系数矩阵为
A = ( a 1 , 1 a 1 , 2 … a 1 , n a 2 , 1 a 2 , 2 … a 2 , n ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 … a n , n ) A=\left( \begin{matrix} &a_{1,1} &a_{1,2} &\dots &a_{1,n} \\ &a_{2,1} &a_{2,2} &\dots &a_{2,n} \\ &\vdots &\vdots &\vdots &\vdots \\ &a_{n,1} &a_{n,2} &\dots &a_{n,n} \\ \end{matrix} \right) A=a1,1a2,1an,1a1,2a2,2an,2a1,na2,nan,n
右值向量(矩阵)为
B = ( b 1 b 2 ⋮ b n ) B=\left ( \begin{matrix} b_1\\ b_2\\ \vdots\\ b_n \end{matrix} \right) B=b1b2bn
解向量为
X = ( x 1 x 2 ⋮ x n ) X=\left ( \begin{matrix} x_1\\ x_2\\ \vdots\\ x_n \end{matrix} \right) X=x1x2xn
因此,方程组可表示为
A X = B AX=B AX=B

矩阵的秩

  • 矩阵可由初等行变换化为行最简形矩阵,所谓行最简型矩阵,即在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的其余元素全为零,就称该矩阵为行最简形矩阵。矩阵的秩就是行最简形矩阵非零行的个数,以 r ( M ) r(M) r(M)来表示矩阵 M M M的秩。如:
    M = ( 1 0 0 − 1 0 1 0 − 2 0 0 1 2 ) M=\left (\begin{matrix} &1 &0 &0 &-1 \\ &0 &1 &0 &-2 \\ &0 &0 &1 &2 \end{matrix} \right) M=100010001122
    r ( M ) = 3 r(M)=3 r(M)=3

高斯消元法(列主元法)

  • 其实就是线性代数中的矩阵行化简算法。

思路

要解上述方程组,需要引入增广矩阵

( A ⋮ b ) = ( a 1 , 1 a 1 , 2 … a 1 , n b 1 a 2 , 1 a 2 , 2 … a 2 , n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 … a n , n b n ) (A\vdots b)= \left( \begin{matrix} &a_{1,1} &a_{1,2} &\dots &a_{1,n} &b_1 \\ &a_{2,1} &a_{2,2} &\dots &a_{2,n} &b_2 \\ &\vdots &\vdots &\vdots &\vdots &\vdots \\ &a_{n,1} &a_{n,2} &\dots &a_{n,n} &b_n \\ \end{matrix} \right) (Ab)=a1,1a2,1an,1a1,2a2,2an,2a1,na2,nan,nb1b2bn

其实就是在系数矩阵 A A A右侧添加右值向量 b b b

  1. r ( A ) = r ( A ⋮ b ) r(A)=r(A\vdots b) r(A)=r(Ab) r ( A ) = n r(A)=n r(A)=n,则方程组有唯一解
  2. r ( A ) = r ( A ⋮ b ) r(A)=r(A\vdots b) r(A)=r(Ab) r ( A ) ≠ n r(A)\ne n r(A)=n,则方程组有无穷个解
  3. r ( A ) ≠ r ( A ⋮ b ) r(A)\ne r(A\vdots b) r(A)=r(Ab),则方程组无解

算法思想

  • 假设行数为 1 ∼ n 1 \sim n 1n,列数为 1 ∼ n + 1 1\sim n+1 1n+1

化简矩阵

  1. 初始化当前行为 i = 1 i=1 i=1
  2. i ∼ n i\sim n in行中寻找绝对值最大的 a i i a_{ii} aii所在行 j j j (最大系数可减小误差)
  3. a j j = 0 a_{jj}=0 ajj=0则说明 r ( A ) ≠ n r(A)\ne n r(A)=n,无唯一解,返回 f a l s e false false
  4. 交换第 i , j i,j i,j两行,使得增广矩阵保持为上三角矩阵
  5. i i i行所有元素除以系数 a i i a_{ii} aii
  6. i = n i=n i=n说明这是末尾行,结束矩阵化简,在求解向量后返回1
  7. i + 1 ∼ n i+1\sim n i+1n行,减去 a i + 1 , i a_{i+1,i} ai+1,i倍第 i i i行,消除其余行的第 i i i列系数
  8. i = i + 1 i=i+1 i=i+1,跳回到第 2 2 2步,寻找下一行

求解向量

此时矩阵为
( A ⋮ b ) = ( 1 a 1 , 2 … a 1 , n b 1 1 … a 2 , n b 2 ⋱ ⋮ 1 b n ) (A\vdots b)= \left( \begin{matrix} &1 &a_{1,2} &\dots &a_{1,n} &b_1 \\ & &1 &\dots &a_{2,n} &b_2 \\ & & &\ddots & &\vdots \\ & & & &1 &b_n \\ \end{matrix} \right) (Ab)=1a1,21a1,na2,n1b1b2bn

x 1 + a 1 , 2 x 2 + ⋯ + a 1 , n x n = b 1 x 2 + a 2 , 3 x 3 + ⋯ + a 2 , n x n = b 2 x n = b n x_1+a_{1,2}x_2+\dots +a_{1,n}x_n=b_1 \\ x_2+a_{2,3}x_3+\dots +a_{2,n}x_n=b_2 \\ x_n=b_n x1+a1,2x2++a1,nxn=b1x2+a2,3x3++a2,nxn=b2xn=bn
此时有
x n = b n x n − 1 = b n − 1 − a n − 1 , n ∗ b n ⋮ x 1 = b 1 − a 1 , n ∗ b n − a 1 , n − 1 ∗ b n − 1 − … a 1 , 2 a 2 x_n=b_n \\ x_{n-1}=b_{n-1}-a_{n-1,n}*b_n \\ \vdots \\ x_1=b_{1}-a_{1,n}*b_n-a_{1,n-1}*b_{n-1}-\dots a_{1,2}a_2 xn=bnxn1=bn1an1,nbnx1=b1a1,nbna1,n1bn1a1,2a2
解向量为
X = ( x 1 x 2 ⋮ x n ) X=\left( \begin{matrix} x_1\\ x_2\\ \vdots\\ x_n \end{matrix} \right) X=x1x2xn

算法模板

int gauss(double num[100][101],int n,double x[]){for(int i=0;i<n;i++){//循环n次,第i轮循环行为i~n-1,列为i~nint maxRow=i;//maxRow记录系数最大的行,作为被减行减小误差for(int j=i+1;j<n;j++){if(abs(num[j][i])>abs(num[maxRow][i])) maxRow=j;}if(abs(num[maxRow][i])<zero) return 0;//x系数为0则增广矩阵无唯一解,返回0if(maxRow!=i){//交换最大行到i行,使之保持为上三角矩阵for(int j=i;j<n+1;j++){swap(num[maxRow][j],num[i][j]);}}for(int j=n;j>=i;j--){//化最大行第一个系数为1num[i][j]/=num[i][i];//从后向前除以系数,否则需要临时变量记录[i][i]的系数}for(int j=i+1;j<n;j++){//被系数行减去for(int k=n;k>=i;k--){num[j][k]-=num[j][i]*num[i][k];//减去了系数行乘以对应系数}}}for(int i=n-1;i>=0;i--){//逆向求解向量x[i]=num[i][n];//赋初值使得ax=bfor(int j=i+1;j<n;j++)x[i]-=num[i][j]*x[j];//减去其他解向量}return 1;
}

例题

题目链接

题目背景

Gauss消元

题目描述

给定一个线性方程组,对其求解

输入格式

第一行,一个正整数 n n n
第二至 n + 1 n+1 n+1行,每行 n + 1 n+1 n+1个整数,为 a 1 , a 2 ⋯ a n a_1, a_2 \cdots a_n a1,a2an b b b,代表一组方程。

输出格式

n n n行,每行一个数,第 i i i行为 x i x_i xi(保留2位小数)
如果不存在唯一解,在第一行输出"No Solution".

输入输出样例

  • 输入 #1
3
1 3 4 5
1 4 7 3
9 3 2 2
  • 输出 #1
-0.97
5.18
-2.39
  • 说明/提示

1 ≤ n ≤ 100 , ∣ a i ∣ ≤ 10 4 , ∣ b ∣ ≤ 10 4 1 \leq n \leq 100, \left | a_i \right| \leq {10}^4 , \left |b \right| \leq {10}^4 1n100,ai104,b104

AC代码

#include <iostream>
#include <algorithm>
#define zero 1e-10
using namespace std;
int gauss(double num[100][101],int n,double x[]){for(int i=0;i<n;i++){//循环n次,第i轮循环行为i~n-1,列为i~nint maxRow=i;//maxRow记录系数最大的行,作为被减行减小误差for(int j=i+1;j<n;j++){if(abs(num[j][i])>abs(num[maxRow][i])) maxRow=j;}if(abs(num[maxRow][i])<zero) return 0;//x系数为0则增广矩阵无唯一解,返回0if(maxRow!=i){//交换最大行到i行,使之保持为上三角矩阵for(int j=i;j<n+1;j++){swap(num[maxRow][j],num[i][j]);}}for(int j=n;j>=i;j--){//化最大行第一个系数为1num[i][j]/=num[i][i];//从后向前除以系数,否则需要临时变量记录[i][i]的系数}for(int j=i+1;j<n;j++){//被系数行减去for(int k=n;k>=i;k--){num[j][k]-=num[j][i]*num[i][k];//减去了系数行乘以对应系数}}}for(int i=n-1;i>=0;i--){//逆向求解向量x[i]=num[i][n];//赋初值使得ax=bfor(int j=i+1;j<n;j++)x[i]-=num[i][j]*x[j];//减去其他解向量}return 1;
}
int main(){int n;double num[100][101];//矩阵大小是n*n+1double x[100];//存储解向量xscanf("%d",&n);for(int i=0;i<n;i++){for(int j=0;j<n+1;j++){scanf("%lf",&num[i][j]);}}if(gauss(num,n,x)){for(int i=0;i<n;i++){printf("%.2lf\n",x[i]);}}else{printf("No Solution");}return 0;
}
/*
3
1 3 4 5
1 4 7 3
9 3 2 2
*/

这篇关于【C++】高斯消元算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079148

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程