本文主要是介绍openEuler搭建hadoop Standalone 模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Standalone
- 升级软件
- 安装常用软件
- 关闭防火墙
- 修改主机名和IP地址
- 修改hosts配置文件
- 下载jdk和hadoop并配置环境变量
- 配置ssh免密钥登录
- 修改配置文件
- 初始化集群
- windows修改hosts文件
- 测试
1、升级软件
yum -y update
2、安装常用软件
yum -y install gcc gcc-c++ autoconf automake cmake make \zlib zlib-devel openssl openssl-devel pcre-devel \rsync openssh-server vim man zip unzip net-tools tcpdump lrzsz tar wget
3、关闭防火墙
sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
setenforce 0
systemctl stop firewalld
systemctl disable firewalld
4、修改主机名和IP地址
hostnamectl set-hostname hadoop
vim /etc/sysconfig/network-scripts/ifcfg-ens32
参考如下:
TYPE=Ethernet
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=none
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=eui64
NAME=ens32
UUID=55e7ac28-39d7-4f24-b6bf-0f9fb40b7595
DEVICE=ens32
ONBOOT=yes
IPADDR=192.168.10.24
PREFIX=24
GATEWAY=192.168.10.2
DNS1=192.168.10.2
5、修改hosts配置文件
vim /etc/hosts
修改内容如下:
192.168.10.24 hadoop
重启系统
reboot
6、下载jdk和hadoop并配置环境变量
创建软件目录
mkdir -p /opt/soft
进入软件目录
cd /opt/soft
下载 JDK
下载 hadoop
wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.6/hadoop-3.3.6.tar.gz
解压 JDK 修改名称
tar -zxvf jdk-8u411-linux-x64.tar.gz
mv jdk1.8.0_411 jdk-8
解压 hadoop 修改名称
tar -zxvf hadoop-3.3.6.tar.gz
mv hadoop-3.3.6 hadoop-3
配置环境变量
vim /etc/profile.d/my_env.sh
编写以下内容:
export JAVA_HOME=/opt/soft/jdk-8export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=rootexport HADOOP_HOME=/opt/soft/hadoop-3
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/nativeexport PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
生成新的环境变量
source /etc/profile
7、配置ssh免密钥登录
创建本地秘钥并将公共秘钥写入认证文件
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
ssh-copy-id root@hadoop
8、修改配置文件
hadoop-env.sh
core-site.xml
hdfs-site.xml
workers
mapred-site.xml
yarn-site.xml
hadoop-env.sh
文档末尾追加以下内容:
export JAVA_HOME=/opt/soft/jdk-8export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=rootexport JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native
core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>fs.defaultFS</name><value>hdfs://hadoop:9000</value></property><property><name>hadoop.tmp.dir</name><value>/home/hadoop_data</value></property><property><name>hadoop.http.staticuser.user</name><value>root</value></property><property><name>dfs.permissions.enabled</name><value>false</value></property><property><name>hadoop.proxyuser.root.hosts</name><value>*</value></property><property><name>hadoop.proxyuser.root.groups</name><value>*</value></property>
</configuration>
hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>dfs.replication</name><value>1</value></property><property><name>dfs.namenode.secondary.http-address</name><value>hadoop:9868</value></property>
</configuration>
workers
注意:
hadoop2.x中该文件名为slaves
hadoop3.x中该文件名为workers
hadoop
mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>mapreduce.application.classpath</name><value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value></property>
</configuration>
yarn-site.xml
<?xml version="1.0"?>
<configuration><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.env-whitelist</name><value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value></property>
</configuration>
9、初始化集群
# 格式化文件系统
hdfs namenode -format
# 启动 NameNode SecondaryNameNode DataNode
start-dfs.sh
# 查看启动进程
jps
# 看到 DataNode SecondaryNameNode NameNode 三个进程代表启动成功
# 启动 ResourceManager daemon 和 NodeManager
start-yarn.sh
# 看到 DataNode NodeManager SecondaryNameNode NameNode ResourceManager 五个进程代表启动成功
重点提示:
# 关机之前 依关闭服务
stop-yarn.sh
stop-dfs.sh
# 开机后 依次开启服务
start-dfs.sh
start-yarn.sh
或者
# 关机之前关闭服务
stop-all.sh
# 开机后开启服务
start-all.sh
#jps 检查进程正常后开启胡哦关闭在再做其它操作
10、修改windows下hosts文件
C:\Windows\System32\drivers\etc\hosts
追加以下内容:
192.168.171.10 hadoop
Windows11 注意 修改权限
-
开始搜索 cmd
找到命令头提示符 以管理身份运行
-
进入 C:\Windows\System32\drivers\etc 目录
cd drivers/etc
-
打开 hosts 配置文件
start hosts
-
追加以下内容后保存
192.168.10.24 hadoop
11、测试
11.1 浏览器访问hadoop
浏览器访问: http://hadoop:9870
浏览器访问:http://hadoop:9868/
浏览器访问:http://hadoop:8088
11.2 测试 hdfs
本地文件系统创建 测试文件 wcdata.txt
vim wcdata.txt
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
在 HDFS 上创建目录 /wordcount/input
hdfs dfs -mkdir -p /wordcount/input
查看 HDFS 目录结构
hdfs dfs -ls /
hdfs dfs -ls /wordcount
hdfs dfs -ls /wordcount/input
上传本地测试文件 wcdata.txt 到 HDFS 上 /wordcount/input
hdfs dfs -put wcdata.txt /wordcount/input
检查文件是否上传成功
hdfs dfs -ls /wordcount/input
hdfs dfs -cat /wordcount/input/wcdata.txt
11.3 测试 mapreduce
计算 PI 的值
hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar pi 10 10
单词统计
hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar wordcount /wordcount/input/wcdata.txt /wordcount/result
hdfs dfs -ls /wordcount/result
hdfs dfs -cat /wordcount/result/part-r-00000
dcount
```bash
hdfs dfs -ls /wordcount/input
上传本地测试文件 wcdata.txt 到 HDFS 上 /wordcount/input
hdfs dfs -put wcdata.txt /wordcount/input
检查文件是否上传成功
hdfs dfs -ls /wordcount/input
hdfs dfs -cat /wordcount/input/wcdata.txt
11.3 测试 mapreduce
计算 PI 的值
hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar pi 10 10
单词统计
hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar wordcount /wordcount/input/wcdata.txt /wordcount/result
hdfs dfs -ls /wordcount/result
hdfs dfs -cat /wordcount/result/part-r-00000
这篇关于openEuler搭建hadoop Standalone 模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!