GT_BERT文本分类

2024-06-20 08:20
文章标签 分类 文本 bert gt

本文主要是介绍GT_BERT文本分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • GT-BERT
  • 结束语
  • 代码实现
  • 整个项目源码(数据集模型)

GT-BERT

在为了使 BERT 模型能够得到广泛的应用,在保证模型分类准确率不降低的情况下,减少模型参数规模并降低时间复杂度,提出一种基于半监督生成对抗网络与 BERT 的文本分类模型 GT-BERT。模型的整体框架如图3所示。
在这里插入图片描述

首先,对BERT进行压缩,通过实验验证选择使用BERT-of-theseus方法进行压缩得到BERT-theseus模型。损失函数设定为文本分类常用的交叉熵损失:
在这里插入图片描述

其中,为训练集的第j个样本,是的标签,C和c表示标签集合和一个类标签。接着,在压缩之后,从SS-GANs角度扩展BERT-theseus模型进行微调。在预训练过的BERT-theseus模型中添加两个组件:(1)添加特定任务层;(2)添加SS-GANs层来实现半监督学习。本研究假定K类句子分类任务,给定输入句子s=(, ,…,),其中开头的为分类特殊标记“[CLS]”,结尾的为句子分隔特殊标记“[SEP]”,其余部分对输入句子进行切分后标记序列输入BERT模型后得到编码向量序列为=(,…,)。
将生成器G生成的假样本向量与真实无标注数据输入BERT-theseus中所提取的特征向量,分别输入至判别器D中,利用对抗训练来不断强化判别器D。与此同时,利用少量标注数据对判别器D进行分类训练,从而进一步提高模型整体质量。
其中,生成器G输出服从正态分布的“噪声”,采用CNN网络,将输出空间映射到样本空间,记作∈。 判别器D也为CNN网络,它在输入中接收向量∈,其中可以为真实标注或者未标注样本 ,也可以为生成器生成的假样本数据。在前向传播阶段,当样本为真实样本时,即=,判别器D会将样本分类在K类之中。当样本为假样本时,即=,判别器D会把样本相对应的分类于K+1类别中。在此阶段生成器G和判别器D的损失分别被记作和,训练过程中G和D通过相互博弈而优化损失。
在反向传播中,未标注样本只增加。标注的真实样本只会影响,在最后和都会受到G的影响,即当D找不出生成样本时,将会受到惩罚,反亦然。在更新D时,改变BERT-theseus的权重来进行微调。训练完成后,生成器G会被舍弃,同时保留完整的BERT-theseus模型与判别器D进行分类任务的预测。

结束语

该文提出了一种用于文本分类任务的GT-BERT模型。首先,使用 theseus方法对BERT进行压缩,在不降低分类性能的前提下,有效降低了BERT 的参数规模和时间复杂度。然后,引人SS-GAN框架改进模型的训练方式,使 BERT-theseus模型能有效利用无标注数据,并实验了多组生成器与判别器的组合方式,获取了最优的生成器判别器组合配置,进一步提升了模型的分类性能。

代码实现

import torch
from transformers import BertTokenizer, BertModel
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import torch.nn as nn
import torch.optim as optim
import os
from glob import globtorch.autograd.set_detect_anomaly(True)# 定义数据集类
class TextDataset(Dataset):def __init__(self, texts, labels, tokenizer, max_len):self.texts = textsself.labels = labelsself.tokenizer = tokenizerself.max_len = max_lendef __len__(self):return len(self.texts)def __getitem__(self, idx):text = self.texts[idx]label = self.labels[idx]encoding = self.tokenizer.encode_plus(text,add_special_tokens=True,max_length=self.max_len,return_token_type_ids=False,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt',)return {'text': text,'input_ids': encoding['input_ids'].flatten(),'attention_mask': encoding['attention_mask'].flatten(),'label': torch.tensor(label, dtype=torch.long)}# 加载数据集函数
def load_data(dataset_name):if dataset_name == '20ng':dirs = glob("E:/python_project/GT_BERT/dateset/20_newsgroups/20_newsgroups/*")texts = []labels = []for i, d in enumerate(dirs):for j in glob(d + "/*")[:10]:try:with open(j, "r", encoding="utf-8") as f:one = f.read()except:continuetexts.append(one)labels.append(i)elif dataset_name == 'sst5':data_dir = 'path/to/sst/data'def load_sst_data(data_dir, split):sentences = []labels = []with open(os.path.join(data_dir, f'{split}.txt')) as f:for line in f:label, sentence = line.strip().split(' ', 1)sentences.append(sentence)labels.append(int(label))return sentences, labelstexts, labels = load_sst_data(data_dir, 'train')elif dataset_name == 'mr':file_path = 'path/to/mr/data'def load_mr_data(file_path):sentences = []labels = []with open(file_path) as f:for line in f:label, sentence = line.strip().split(' ', 1)sentences.append(sentence)labels.append(int(label))return sentences, labelstexts, labels = load_mr_data(file_path)elif dataset_name == 'trec':file_path = 'path/to/trec/data'def load_trec_data(file_path):sentences = []labels = []with open(file_path) as f:for line in f:label, sentence = line.strip().split(' ', 1)sentences.append(sentence)labels.append(label)return sentences, labelstexts, labels = load_trec_data(file_path)else:raise ValueError("Unsupported dataset")return texts, labels# 默认加载 20 News Group 数据集
dataset_name = '20ng'
texts, labels = load_data(dataset_name)label_encoder = LabelEncoder()
labels = label_encoder.fit_transform(labels)# 使用BERT的tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
max_len = 128# 将数据集划分为训练集和验证集
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2)
train_dataset = TextDataset(train_texts, train_labels, tokenizer, max_len)
val_dataset = TextDataset(val_texts, val_labels, tokenizer, max_len)
train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=16, shuffle=False)# 定义BERT编码器
class BERTTextEncoder(nn.Module):def __init__(self):super(BERTTextEncoder, self).__init__()self.bert = BertModel.from_pretrained('bert-base-uncased')def forward(self, input_ids, attention_mask):outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)pooled_output = outputs[1]return pooled_output# 定义生成器
class Generator(nn.Module):def __init__(self, noise_dim, output_dim):super(Generator, self).__init__()self.fc = nn.Sequential(nn.Linear(noise_dim, 128),nn.ReLU(),nn.Linear(128, output_dim),nn.Tanh())def forward(self, noise):return self.fc(noise)# 定义判别器
class Discriminator(nn.Module):def __init__(self, input_dim):super(Discriminator, self).__init__()self.fc = nn.Sequential(nn.Linear(input_dim, 128),nn.ReLU(),nn.Linear(128, 1),nn.Sigmoid())def forward(self, features):return self.fc(features)# 定义完整的GT-BERT模型
class GTBERTModel(nn.Module):def __init__(self, bert_encoder, noise_dim, output_dim, num_classes):super(GTBERTModel, self).__init__()self.bert_encoder = bert_encoderself.generator = Generator(noise_dim, output_dim)self.discriminator = Discriminator(output_dim)self.classifier = nn.Linear(output_dim, num_classes)def forward(self, input_ids, attention_mask, noise):real_features = self.bert_encoder(input_ids, attention_mask)fake_features = self.generator(noise)disc_real = self.discriminator(real_features)disc_fake = self.discriminator(fake_features)class_output = self.classifier(real_features)return class_output, disc_real, disc_fake# 初始化模型和超参数
noise_dim = 100
output_dim = 768
num_classes = len(set(labels))
bert_encoder = BERTTextEncoder()
model = GTBERTModel(bert_encoder, noise_dim, output_dim, num_classes)# 定义损失函数和优化器
criterion_class = nn.CrossEntropyLoss()
criterion_disc = nn.BCELoss()
optimizer_G = optim.Adam(model.generator.parameters(), lr=0.0002)
optimizer_D = optim.Adam(model.discriminator.parameters(), lr=0.0002)
optimizer_BERT = optim.Adam(model.bert_encoder.parameters(), lr=2e-5)
optimizer_classifier = optim.Adam(model.classifier.parameters(), lr=2e-5)num_epochs = 10# 训练循环
e_id = 1
for epoch in range(num_epochs):model.train()for batch in train_dataloader:e_id += 1input_ids = batch['input_ids']attention_mask = batch['attention_mask']labels = batch['label']# 生成噪声noise = torch.randn(input_ids.size(0), noise_dim)# 获取模型输出class_output, disc_real, disc_fake = model(input_ids, attention_mask, noise)# 计算损失real_labels = torch.ones(input_ids.size(0), 1)fake_labels = torch.zeros(input_ids.size(0), 1)loss_real = criterion_disc(disc_real, real_labels)loss_fake = criterion_disc(disc_fake, fake_labels)loss_class = criterion_class(class_output, labels)if e_id % 5 == 0:# 优化判别器optimizer_D.zero_grad()loss_D = (loss_real + loss_fake) / 2loss_D.backward(retain_graph=True)optimizer_D.step()elif e_id % 2 == 0:# 优化生成器loss_G = criterion_disc(disc_fake, real_labels)optimizer_G.zero_grad()loss_G.backward(retain_graph=True)optimizer_G.step()else:# 优化BERT和分类器optimizer_BERT.zero_grad()optimizer_classifier.zero_grad()loss_class.backward()optimizer_BERT.step()optimizer_classifier.step()print(f'Epoch [{epoch + 1}/{num_epochs}], Loss D: {loss_D.item()}, Loss G: {loss_G.item()}, Loss Class: {loss_class.item()}')# 验证模型
model.eval()
val_loss = 0
correct = 0
with torch.no_grad():for batch in val_dataloader:input_ids = batch['input_ids']attention_mask = batch['attention_mask']labels = batch['label']noise = torch.randn(input_ids.size(0), noise_dim)class_output, disc_real, disc_fake = model(input_ids, attention_mask, noise)loss = criterion_class(class_output, labels)val_loss += loss.item()pred = class_output.argmax(dim=1, keepdim=True)correct += pred.eq(labels.view_as(pred)).sum().item()val_loss /= len(val_dataloader.dataset)
accuracy = correct / len(val_dataloader.dataset)
print(f'Validation Loss: {val_loss}, Accuracy: {accuracy}')

整个项目源码(数据集模型)

项目

这篇关于GT_BERT文本分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077599

相关文章

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。