一文讲透彻初学者怎么入门大语言模型(LLM)?

2024-06-20 06:52

本文主要是介绍一文讲透彻初学者怎么入门大语言模型(LLM)?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于如何入门LLM,大多数回答都提到了调用API、训练微调和应用。但是大模型更新迭代太快,这个月发布的大模型打榜成功,仅仅过了一个月就被其他模型超越。训练微调也已经不是难事,有大量开源的微调框架(llamafactory、firefly等),你只要懂部署,配置几个参数就能启动训练。甚至现在有大量云上项目,你根本不需要部署,直接上传数据,就能启动。

这我让想起来之前的算法工程师都被调侃成调参师,新出一个大模型,下载下来跑一遍,运行一遍AutoTokenizer.from_pretrained(model_path),对于自己理解和入门大模型没有任何意义。

对于初学者如何入门,我的建议是从一个开源大模型入手,全面了解它的运行原理以及如何应用。可以将大模型比作一辆车,我开车无需理解车是如何做的,但是车出问题了,了解原理能够帮我们快速找到其中的问题。

为了更好入门大模型,我建议按照如下顺序,分为编程基础准备、大模型原理理解和大模型应用三个部分。

一、编程基础准备

1.熟练Python编程语言

我一般使用numpy用于数据处理,matplotlib用于画图分析(比如分析位置编码、注意力矩阵),numpy很多函数与pytorch类似放后面讲,这里主要讲常用的matplotlib画图函数,学好matplotlib库有利于我们以可视化的角度去理解一些大模型原理。

  • plt.bar(x,y,width)

举个例子,画直方图分析llama3 8B中参数分布情况,可以发现有2个峰值,分别是embedding层和最后输出logits层,两者参数量一致。

  • plt.plot(x,y,width)

举个例子,画点图分析llama3 8B中的位置编码RoPE。在同一位置m下,可以发现向量中的元素 q m , i {q_{m,i}} qm,i,在i比较小的时候变化较快,i较大的时候变化较慢。

  • plt.colorbar(x,y)

举个例子,画热力图分析llama3 8B中的Attenion矩阵。我的intput为“The boy didn’t cross the street because he was too ”,要预测下一个词。观察第10行(分析注意力矩阵都是以行为单位)可以发现"he"这个toke与"boy"这个token关联度很高,而不是“street”这个token。

所以说画图很重要,深度学习本质上都是矩阵运算,单看数字看不出什么结论,需要结合画图等可视化工具分析。

2.熟悉pytorch等深度学习框架

目前主流大模型基本上都是用pytorch写的,pytorch语法太多了,下面介绍在LLM中常用的pytorch语法(排序不分先后)

(1).torch.nn.Embedding(num_embeddings, embedding_dim...)

其中num_embeddings代表词表的大小,embedding_dim代表词向量的维度。embedding.weight的size为[num_embeddings,embedding_dim]。举个例子,输入索引i,输出embedding.weight 的第 i 行。

(2).torch.matmul(x,y)x*ytorch.dot(x,y)torch.mul(x,y)之间的区别

其中torch.matmul(x,y)代表矩阵相乘torch.mul(x,y)x*y均代表矩阵对应元素相乘torch.dot(x,y)代表向量之间的点积

(3).torch.full(size, fill_value)

torch.full([2,3],2.0)
#tensor([[2,2,2],[2,2,2]])

(4).torch.triu(x)

import torch
a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = torch.triu(a)
print(b)# tensor([[1, 2, 3], [0, 5, 6], [0, 0, 9]])

用于注意力机制中的mask计算

(5). torch.outer(x,y)

x = torch.arange(1,5)
y = torch.arange(1,4)
print(torch.outer(x,y))
# tensor([[ 1,  2,  3],[ 2,  4,  6],[ 3,  6,  9],[ 4,  8, 12]])

一般用于大模型位置编码计算中,比如正弦余弦位置编码、相对位置编码、 旋转位置编码等。

(6). torch.view_as_complex(x)

x=torch.randn(4, 2)
# tensor([[ 0.0024,  1.5686],[-1.2883,  1.0111],[ 0.8764,  0.1839],[ 0.8543, -0.0061]])
torch.view_as_complex(x)
# tensor([0.0024+1.5686j, -1.2883+1.0111j,  0.8764+0.1839j,  0.8543-0.0061j])

大模型位置编码有两种计算方法,一种是在实数域计算、一种是复数域计算。该函数一般用于复数域计算。

(7). torch.view_as_real(x)

x= torch.tensor([ 0.0024+1.5686j, -1.2883+1.0111j,  0.8764+0.1839j,  0.8543-0.0061j])
torch.view_as_real(x)
# tensor([[ 0.0024,  1.5686],[-1.2883,  1.0111],[ 0.8764,  0.1839],[ 0.8543, -0.0061]])

同上

(8). 弄清楚torch.reshape(input,shape)torch.view(input,shape)

我建议从内存分配的角度来理解reshape。无论一个张量 shape 怎么改变,它的分量在内存中的存储顺序也是不变的。

import numpy as np
a = np.arange(6)# 其中order="C"、"F"、"A"分别代表不同读取顺序,
print(np.reshape(a, (2, 3), order='C'))
#[[0 1 2][3 4 5]]
print(np.reshape(a, (2, 3), order='F'))
#[[0 2 4][1 3 5]]
print(np.reshape(a, (2, 3), order='A'))
#[[0 1 2][3 4 5]]

(9). 弄清楚torch.transpose(tensor,dim0,dim1)torch.permute(dim0, dim1, dim2, dim3)

两者均代表矩阵的转置,在二维的时候很容易想明白转置之后的情况,但是高维度的时候就糊涂了。举个例子:

arr = torch.arange(16)
arr = arr.reshape(2,2,4)
# tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7]],[[ 8,  9, 10, 11],[12, 13, 14, 15]]])
arr = arr.transpose(1,2)
# tensor([[[ 0,  4],[ 1,  5],[ 2,  6],[ 3,  7]],[[ 8, 12],[ 9, 13],[10, 14],[11, 15]]])

上面这个三维数组例子,我定义为(batch,H,W),transpose(1,2)等效于长和宽转置。类似这样的例子我们已经练习过很多次了。

不过如何理解arr.transpose(0,1)?,batch和H之间转置没有直接的物理含义。这需要借用矩阵stride概念来理解。

详解见:https://www.bilibili.com/video/BV1pN4y117rD

(10). torch.cat 和 torch.stack的区别

(11). 以及一些常用的数学计算公式torch.rsqrt、tensor.pow、torch.mean等等

二、大模型原理理解

整体要干什么?

简单来说通过基于Transformer架构预测下一个词出现的概率。就不放Attention is all you Need论文里的图了。我这里放一张llama3-8B的网络架构图。这个网络架构里的每一个模块,你都能手写出来,就算是大模型原理这一块入门了。建议学习网络架构的时候带着问题去学习,不要局限于矩阵中的元素怎么乘,pytorch语法只是工具,真正需要做的是思考为什么这样做以及背后的数学含义。下面分享一下我亲身学习大模型原理,思考的一些点,希望对大家有帮助。

1.自注意力机制的理解

  • 了解单头注意力机制,什么是K矩阵、V矩阵和Q矩阵,以及如下公式为什么要除 d k {\sqrt{d_k}} dk
    o u t p u t = s o f t m a x ( Q K T ) d k V output = {softmax({QK^T})\over{\sqrt{d_k}}}V output=dk softmax(QKT)V

  • 分析为什么在注意力机制中要加入mask?

  • 分析attention is all you need这篇文章中的多头注意力机制(MHA),分析为什么要多头?单头注意力机制为什么不行?

  • 分析为什么要搞Grouped-query Attention(GQA),它相比MHA的好处在哪里?以及应用在哪些方面。

上面四点弄明白,对于注意力机制差不多算入门了。

2.位置编码的理解

  • 为什么需要位置编码?它解决了常规NLP网络架构中的什么问题
  • 绝对位置编码和相对位置编码,他们各有什么优点和缺点
  • 为什么现在大模型都在用旋转位置编码RoPE?它在实数域和复数域的实现方式是怎样的?RoPE的缺点有哪些?顺带可以了解下最新的上下文位置编码CoPE。
  • 大模型为什么有Long-Context问题以及如何利用位置编码去解决长文本问题?

3.前馈网络(feed forwad)的理解

  • 为什么需要前馈网络?

  • 为什么llama3要使用SwiGLU?

4.归一化(normalization )

  • 为什么需要归一化?
  • batch normalization 、layer normalization有什么区别?为什么语言模型用layer normalization,不去用batch normalization?
  • 详细理解layer normalization中RMS Norm,分析其相比常规layer normalization的优势。

5.推理

  • 本质上每次推理都是一次吐一个字?如何加速推理?可以去了解KV Cache。

  • 句子长度参差不齐,batch推理如何补齐长度?

  • 如果最后大模型输出logits取最大值,那么大模型生成式能力从何体现?这就需要去了解大模型参temperaturetop p参数理解

三、大模型应用

1.微调训练

  • 大模型训练分为预训练、指令微调和人类反馈强化学习。大模型训练对于硬件要求高,平民玩家没卡,建议去了解Lora、QLora等高效微调算法。
  • 了解llamfactory、Firefly等大模型微调框架,自己做个数据集,在大模型的基础上微调子任务。
  • 如果有卡,可以尝试多卡多机跑跑模型,因为我也没什么卡,所以没法给出建议。

2.RAG

  • 思考为什么要RAG?RAG和Long Context之间是什么关系?
  • RAG分为知识库构建、知识检索和智能问答,从零实现一个最简单的RAG。教程见https://zhuanlan.zhihu.com/p/696872562
  • 在最简单RAG的基础上,学一学FaissMilvus等向量数据库,优化RAG中涉及的检索、知识存储
  • 学一学成熟的RAG框架ragflow

3.Agent

  • 从零手写一个Agent框架,见https://github.com/KMnO4-zx/TinyAgent
  • 学一学成熟的Agent框架langchaindify

最后,我也在持续学习中,如果文章有错误欢迎评论区各位大佬指出!

这篇关于一文讲透彻初学者怎么入门大语言模型(LLM)?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077408

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验