比较日志性能:Glog、Spdlog 和 ofstream 在不同硬件上的表现(推荐Spdlog)

2024-06-19 23:36

本文主要是介绍比较日志性能:Glog、Spdlog 和 ofstream 在不同硬件上的表现(推荐Spdlog),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 比较日志性能:Glog、Spdlog 和 ofstream 在不同硬件上的表现
    • 1. 引言
    • 2. 测试简介
    • 3. 硬件配置
      • 桌面电脑(Ubuntu 18.04)
      • 树莓派 5(Ubuntu 24.04)
    • 4. 测试结果
      • 桌面电脑(Ubuntu 18.04)
      • 树莓派 5(Ubuntu 24.04)
    • 5. 详细分析
    • 6. 实现代码
    • 7. 其他
      • 7.1 Spdlog 的同步和异步支持
      • 7.2 Glog 的同步和异步
      • 7.3 Glog 的多线程和多进程写入顺序问题
    • 8. 结论
      • 8.1 测试版本差异

比较日志性能:Glog、Spdlog 和 ofstream 在不同硬件上的表现

1. 引言

日志记录是嵌入式系统中关键的调试和监控手段。在选择合适的日志库时,性能往往是重要的考量因素。本文对比了 Spdlog 和 Glog 这两个流行的日志库,以及标准的 ofstream 流在嵌入式平台上的性能表现。测试包括同步和异步模式,以全面评估它们在高频日志记录场景下的性能表现。

2. 测试简介

为了比较 Spdlog 和 Glog 在嵌入式 ARM64 平台上的性能表现,设计了测试代码,分别测试了以下场景下的日志记录耗时:

  • ofstream 同步文件写
  • Spdlog 同步日志记录
  • Spdlog 异步日志记录
  • Glog 同步日志记录

测试使用 10 万条日志数据,每个日志记录 200 字节的消息。测试平台包括桌面电脑(Ubuntu 18.04)和树莓派 5(Ubuntu 24.04)。

3. 硬件配置

桌面电脑(Ubuntu 18.04)

  • CPU:AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx
  • 内存:4.8G
  • 操作系统:Ubuntu 18.04.4 LTS
  • GCC 版本:7.5.0
  • G++ 版本:7.5.0

树莓派 5(Ubuntu 24.04)

  • CPU:Cortex-A76
  • 内存:7.8Gi
  • 操作系统:Ubuntu 24.04 LTS
  • GCC 版本:13.2.0
  • G++ 版本:13.2.0

4. 测试结果

桌面电脑(Ubuntu 18.04)

ofstream logging: 0.0719351 seconds
spdlog sync logging: 0.0720132 seconds
spdlog async logging: 0.160619 seconds
glog logging: 0.297419 seconds

树莓派 5(Ubuntu 24.04)

ofstream logging: 0.390023 seconds
spdlog sync logging: 0.0649371 seconds
spdlog async logging: 0.1108 seconds
glog logging: 0.953905 seconds

测试结果表明,在同步日志记录场景下,ofstream 方式的日志记录耗时最短,其次是 Spdlog 同步日志记录,Glog 同步日志记录耗时最长。Spdlog 异步日志记录耗时比 Spdlog 同步日志记录高出约 2 倍

5. 详细分析

  • ofstream:作为标准的文件写操作,其性能表现优异,但在嵌入式系统中,频繁的文件读写操作可能会对系统整体性能造成一定影响。

  • spdlog:在同步场景下通过原子操作和锁机制保证线程安全,相比 Glog 的单线程模型,性能有所提升。Spdlog 的异步日志记录采用多线程和消息队列的方式,将日志记录操作与主线程分离,有效降低了对主线程的影响,但也带来了一定的性能开销。

  • glog:同步日志记录存在性能问题,可能与其单线程模型以及日志格式化等因素有关。Glog 的异步日志记录并未进行测试,因为标准 Glog 库不直接支持异步日志记录。

6. 实现代码

#include <glog/logging.h>
#include <spdlog/async.h>
#include <spdlog/sinks/basic_file_sink.h>
#include <spdlog/spdlog.h>#include <chrono>
#include <cstdio>  // for std::remove
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <vector>const int LOG_COUNT = 100000;
const int MESSAGE_SIZE = 200;std::vector<std::string> generate_messages(int count, int size) {std::vector<std::string> messages(count);std::string sample_message(size, 'x');for (int i = 0; i < count; ++i) {messages[i] = "This is a test log message number " + std::to_string(i) + ": " + sample_message;}return messages;
}void initialize_logging() {FLAGS_log_dir = ".";FLAGS_logtostderr = false;FLAGS_alsologtostderr = false;google::InitGoogleLogging("glog_async_worker");spdlog::init_thread_pool(8192, 1);  // Assuming 1 background thread for the example
}void shutdown_logging() {google::ShutdownGoogleLogging();spdlog::shutdown();
}void prepare_log_files() {// Create or truncate the log filesstd::ofstream("ofstream_log.txt").close();std::ofstream("spdlog_sync.txt").close();std::ofstream("spdlog_async.txt").close();std::ofstream("glog_example.INFO").close();
}void test_logging(const std::string& test_name, std::function<void(const std::vector<std::string>&)> log_function,const std::vector<std::string>& messages) {auto start = std::chrono::high_resolution_clock::now();log_function(messages);auto end = std::chrono::high_resolution_clock::now();std::chrono::duration<double> elapsed = end - start;std::cout << test_name << ": " << elapsed.count() << " seconds" << std::endl;
}void test_ofstream(const std::vector<std::string>& messages) {std::ofstream log_file("ofstream_log.txt");for (const auto& message : messages) {log_file << message << "\n";}
}void test_spdlog_sync(const std::vector<std::string>& messages) {auto logger = spdlog::basic_logger_mt("spdlog_sync", "spdlog_sync.txt");for (const auto& message : messages) {logger->info(message);}
}void test_spdlog_async(const std::vector<std::string>& messages) {auto logger = spdlog::basic_logger_mt<spdlog::async_factory>("spdlog_async", "spdlog_async.txt");for (const auto& message : messages) {logger->info(message);}
}void test_glog(const std::vector<std::string>& messages) {for (const auto& message : messages) {LOG(INFO) << message;}
}int main() {initialize_logging();auto messages = generate_messages(LOG_COUNT, MESSAGE_SIZE);prepare_log_files();test_logging("ofstream logging", test_ofstream, messages);prepare_log_files();test_logging("spdlog sync logging", test_spdlog_sync, messages);prepare_log_files();test_logging("spdlog async logging", test_spdlog_async, messages);prepare_log_files();test_logging("glog logging", test_glog, messages);shutdown_logging();return 0;
}

7. 其他

7.1 Spdlog 的同步和异步支持

  • Spdlog 明确支持同步和异步两种日志记录模式。
  • 在异步模式下,Spdlog 使用单独的线程处理日志写入操作,减少了日志记录对主线程的影响,特别是在高并发写入日志的场景下,能显著提高性能。

7.2 Glog 的同步和异步

  • Glog 原生设计为同步日志库,即日志记录操作在调用线程中执行。
  • 同步模式在高日志输出频率的场景中,可能会影响应用程序的性能,尤其是对响应时间有严格要求的场景。
  • 标准 Glog 库本身不直接支持异步日志记录。
  • 社区中存在一些非官方的扩展,如 G2log 和 G3log,它们基于 C++11 编写,提供了异步日志功能。

7.3 Glog 的多线程和多进程写入顺序问题

  • Glog 的设计没有明确保证多线程或多进程同时写入同一日志文件时,日志的顺序能严格按照写入时的时间顺序。
  • 高并发写入情况下,不同线程或进程的日志条目可能因操作系统调度、磁盘 I/O 缓冲等原因交错写入,导致日志顺序混乱。

8. 结论

在嵌入式 ARM64 平台上:

  • 追求极致性能:建议使用 ofstream 进行日志记录。
  • 兼顾性能和线程安全spdlog 是一个不错的选择。
  • 高性能要求场景glog 在性能方面表现不佳,不推荐用于对性能要求较高的嵌入式系统。

8.1 测试版本差异

需要注意的是,不同平台、不同版本的操作系统及编译器版本可能会对测试结果产生影响。本文测试结果基于特定版本的硬件和软件配置,其他配置可能会有不同的性能表现。

这篇关于比较日志性能:Glog、Spdlog 和 ofstream 在不同硬件上的表现(推荐Spdlog)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076467

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一