在数据分析中,对缺失值解决方案的分析

2024-06-19 22:44

本文主要是介绍在数据分析中,对缺失值解决方案的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 删除缺失值

  • 使用dropna函数来删除空值,具体用法如下

    # 函数用法
    df.dropna(    axis=0,     how='any',     inplace=True,     subset=['列名',...],    thresh=10
    )
    ​
    df.drop() # 按列删除
  • dropna函数参数解释

    • axis=0

      • 可选参数 ,默认为0按行删

      • 0, or 'index':删除包含缺失值的行

      • 1, or 'columns':删除包含缺失值的列

    • how='any'

      • 可选参数,默认为any

      • any: 如果存在NA值,则删除该行或列

      • all: 如果所有值都是NA,则删除该行或列

    • inplace=False

      • 可选参数,不建议使用这个参数

      • 默认False, 不对原数据集进行修改

      • inplce=True,对原数据集进行修改

    • subset接收一个列表

      • 接收一个列表,列表中的元素为列名: 对特定的列进行缺失值删除处理

    • thresh=n

      • 可选参数

      • 参数值为int类型,按行去除NaN值,去除NaN值后该行剩余数值的数量(列数)大于等于n,便保留这一行

2.缺失值替换

  • Pandas 的 fillna 方法

    • 常数填充:用指定的常数填充缺失值。

      df['column'].fillna(value, inplace=True)

    • 前向填充:用前一个有效值填充缺失值。

      df['column'].fillna(method='ffill', inplace=True)

    • 后向填充:用后一个有效值填充缺失值。

      df['column'].fillna(method='bfill', inplace=True)

    • 使用均值、中位数或众数填充

      df['column'].fillna(df['column'].mean(), inplace=True) # 均值 df['column'].fillna(df['column'].median(), inplace=True) # 中位数 df['column'].fillna(df['column'].mode()[0], inplace=True) # 众数

  • Pandas 的 interpolate 方法

    • 线性插值填充缺失值。

      df['column'].interpolate(method='linear', inplace=True)

  • Scikit-learn 的 SimpleImputer

    • 使用均值、中位数或众数填充

      from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy='mean') # 或者 'median', 'most_frequent' df['column'] = imputer.fit_transform(df[['column']])

        选择填充缺失值的方法取决于具体的数据和分析的需求。例如,对于时间序列数据,使用前向或后向填充可能更合理;而对于非时间序列数据,使用均值、中位数或众数填充可能更合适。

这篇关于在数据分析中,对缺失值解决方案的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076365

相关文章

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

使用DrissionPage控制360浏览器的完美解决方案

《使用DrissionPage控制360浏览器的完美解决方案》在网页自动化领域,经常遇到需要保持登录状态、保留Cookie等场景,今天要分享的方案可以完美解决这个问题:使用DrissionPage直接... 目录完整代码引言为什么要使用已有用户数据?核心代码实现1. 导入必要模块2. 关键配置(重点!)3.

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin