Python微磁学磁倾斜和西塔规则算法

2024-06-19 21:04

本文主要是介绍Python微磁学磁倾斜和西塔规则算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜有限差分-用例

📜离散化偏微分方程求解器和模型定型 | 📜三维热传递偏微分方程解 | 📜特定资产期权价值偏微分方程计算 | 📜三维波偏微分方程空间导数计算 | 📜应力-速度公式一阶声波方程模拟二维地震波 | 📜微磁学计算磁化波动求解器、色散关系和能垒的弦法 | 📜磁倾斜导数数据平滑

📜指数衰减:🖊常微分方程数值求解器 | 🖊绘制衰减图 | 🖊绘制(正向欧拉、反向欧拉和克兰克-尼科尔森)西塔规则算法放大因子图 | 🖊泰勒级数展开符号计算三种算法误差 | 🖊模型误差、数据误差、离散化误差和舍入误差 | 🖊求解器泛化

📜Python热涨落流体力学求解算法和英伟达人工智能核评估模型

📜常微分方程用例:​Python机器人动力学和细胞酶常微分方程

在这里插入图片描述

✒️Python不同初始条件下热方程

有限差分法是获得偏微分和代数方程数值解的技术之一。在该方法中,解在有限网格点中以离散形式近似。

首先考虑一个偏微分方程:
u t + a u x = 0 u_t+a u_x=0 ut+aux=0
正向时间前向空间算法由下式给出:
V m n + 1 − V m n k + a V m + 1 n − V m n h = 0 \frac{V_m^{n+1}-V_m^n}{k}+a \frac{V_{m+1}^n-V_m^n}{h}=0 kVmn+1Vmn+ahVm+1nVmn=0
正向时间中心空间算法由下式给出:
V m n − 1 − V m n k + a ⋅ V m − − − V m − 1 n 2 h − 0 \frac{V_m^{n-1}-V_m^n}{k}+a \cdot \frac{V_{m-}^{-}-V_{m-1}^n}{2 h}-0 kVmn1Vmn+a2hVmVm1n0
中心时间中心空间算法由下式给出
V m n + 1 − V m n − 1 2 k + a ⋅ V m + 1 n − V m − 1 n 2 h = 0 \frac{V_m^{n+1}-V_m^{n-1}}{2 k}+a \cdot \frac{V_{m+1}^n-V_{m-1}^n}{2 h}=0 2kVmn+1Vmn1+a2hVm+1nVm1n=0
让我们考虑另一个偏微分方程,
u t = b u x x ; b > 0 u_t=b u_{x x} ; \quad b>0 ut=buxx;b>0
正向时间中心空间算法由下式给出:
V m n + 1 − V m n k = b V m + 1 n − 2 V m n + V m − 1 n h 2 = 0 \frac{V_m^{n+1}-V_m^n}{k}=b \frac{V_{m+1}^n-2 V_m^n+V_{m-1}^n}{h^2}=0 kVmn+1Vmn=bh2Vm+1n2Vmn+Vm1n=0
示例:数值求解
u t = 0.05 u x x u_t=0.05 u_{x x} ut=0.05uxx

  • u u u 代表温度
  • x x x 表示 0 ≤ x ≤ L 0 \leq x \leq L 0xL​ 的位置
  • t t t 表示 t > 0 t>0 t>0的时间
  • 边界条件为 u ( t , 0 ) = 0 u(t, 0)=0 u(t,0)=0 u ( t , L ) = 0 u(t, L)=0 u(t,L)=0 t > 0 t>0 t>0
  • 初始条件为 u ( 0 , x ) = sin ⁡ ( π x ) u(0, x)=\sin (\pi x) u(0,x)=sin(πx) 对于 0 ≤ x ≤ L 0 \leq x \leq L 0xL
  • b b b 表示 b > 0 b>0 b>0 的扩散系数

代码求解:

import numpy as np
import matplotlib.pyplot as pltL = 1  
T = 1  
m = 5  
n = 5  
h = L / m  
k = T / n  
b = 0.05  
mu = k / h**2  c = b * mu
if c <= 0 or c >= 0.5:print('Scheme is unstable')v = np.zeros((m + 1, n + 1))
ic1 = lambda x: np.sin(np.pi * x)for j in range(1, m + 2):v[0, j - 1] = ic1((j - 1) * h)b1 = lambda t: 0  # L.B.C
b2 = lambda t: 0  # R.B.Cfor i in range(1, n + 2):v[i - 1, 0] = b1((i - 1) * k)v[i - 1, n] = b2((i - 1) * k)for i in range(n):for j in range(1, m):v[i + 1, j] = (1 - 2 * b * mu) * v[i, j] + b * mu * v[i, j + 1] + b * mu * v[i, j - 1]x = np.linspace(0, L, m + 1)
t = np.linspace(0, T, n + 1)
X, T = np.meshgrid(x, t)fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, T, v, cmap='viridis')
ax.set_xlabel('Space X')
ax.set_ylabel('Time T')
ax.set_zlabel('V')
plt.title('Python for Heat')
plt.show()

接上例,初始条件改为:

对于 0 ≤ x ≤ L 0 \leq x \leq L 0xL

u ( 0 , x ) = { 2 x if  x < 0.5 2 ( 1 − x ) 否则  u(0, x)= \begin{cases}2 x & \text { if } x<0.5 \\ 2(1-x) & \text { 否则 }\end{cases} u(0,x)={2x2(1x) if x<0.5 否则 

代码数值解:

import numpy as np
import matplotlib.pyplot as pltL = 1  
T = 1  
m = 5  
n = 5  
h = L / m  
k = T / n  
b = 0.05  
mu = k / h ** 2 c = b * mu
if c <= 0 or c >= 0.5:print('Scheme is unstable')v = np.zeros((m + 1, n + 1))
ic1 = lambda x: 2 * x
ic2 = lambda x: 2 * (1 - x)x = np.linspace(0, L, m + 1)
x = np.linspace(0, L, m + 1)
for j in range(1, m + 2):if x[j - 1] < 0.5:v[0, j - 1] = ic1(x[j - 1])  else:v[0, j - 1] = ic2(x[j - 1])  b1 = lambda t: 0  # L.B.C
b2 = lambda t: 0  # R.B.Cfor i in range(1, n + 2):v[i - 1, 0] = b1((i - 1) * k)v[i - 1, n] = b2((i - 1) * k)for i in range(n):for j in range(1, m):v[i + 1, j] = (1 - 2 * b * mu) * v[i, j] + b * mu * v[i, j + 1] + b * mu * v[i, j - 1]# Visualization
x = np.linspace(0, L, m + 1)
t = np.linspace(0, T, n + 1)
X, T = np.meshgrid(x, t)fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, T, v, cmap='viridis')
ax.set_xlabel('Space X')
ax.set_ylabel('Time T')
ax.set_zlabel('V')
plt.title('Python for Heat ')
plt.show()

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python微磁学磁倾斜和西塔规则算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076142

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提