Python微磁学磁倾斜和西塔规则算法

2024-06-19 21:04

本文主要是介绍Python微磁学磁倾斜和西塔规则算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜有限差分-用例

📜离散化偏微分方程求解器和模型定型 | 📜三维热传递偏微分方程解 | 📜特定资产期权价值偏微分方程计算 | 📜三维波偏微分方程空间导数计算 | 📜应力-速度公式一阶声波方程模拟二维地震波 | 📜微磁学计算磁化波动求解器、色散关系和能垒的弦法 | 📜磁倾斜导数数据平滑

📜指数衰减:🖊常微分方程数值求解器 | 🖊绘制衰减图 | 🖊绘制(正向欧拉、反向欧拉和克兰克-尼科尔森)西塔规则算法放大因子图 | 🖊泰勒级数展开符号计算三种算法误差 | 🖊模型误差、数据误差、离散化误差和舍入误差 | 🖊求解器泛化

📜Python热涨落流体力学求解算法和英伟达人工智能核评估模型

📜常微分方程用例:​Python机器人动力学和细胞酶常微分方程

在这里插入图片描述

✒️Python不同初始条件下热方程

有限差分法是获得偏微分和代数方程数值解的技术之一。在该方法中,解在有限网格点中以离散形式近似。

首先考虑一个偏微分方程:
u t + a u x = 0 u_t+a u_x=0 ut+aux=0
正向时间前向空间算法由下式给出:
V m n + 1 − V m n k + a V m + 1 n − V m n h = 0 \frac{V_m^{n+1}-V_m^n}{k}+a \frac{V_{m+1}^n-V_m^n}{h}=0 kVmn+1Vmn+ahVm+1nVmn=0
正向时间中心空间算法由下式给出:
V m n − 1 − V m n k + a ⋅ V m − − − V m − 1 n 2 h − 0 \frac{V_m^{n-1}-V_m^n}{k}+a \cdot \frac{V_{m-}^{-}-V_{m-1}^n}{2 h}-0 kVmn1Vmn+a2hVmVm1n0
中心时间中心空间算法由下式给出
V m n + 1 − V m n − 1 2 k + a ⋅ V m + 1 n − V m − 1 n 2 h = 0 \frac{V_m^{n+1}-V_m^{n-1}}{2 k}+a \cdot \frac{V_{m+1}^n-V_{m-1}^n}{2 h}=0 2kVmn+1Vmn1+a2hVm+1nVm1n=0
让我们考虑另一个偏微分方程,
u t = b u x x ; b > 0 u_t=b u_{x x} ; \quad b>0 ut=buxx;b>0
正向时间中心空间算法由下式给出:
V m n + 1 − V m n k = b V m + 1 n − 2 V m n + V m − 1 n h 2 = 0 \frac{V_m^{n+1}-V_m^n}{k}=b \frac{V_{m+1}^n-2 V_m^n+V_{m-1}^n}{h^2}=0 kVmn+1Vmn=bh2Vm+1n2Vmn+Vm1n=0
示例:数值求解
u t = 0.05 u x x u_t=0.05 u_{x x} ut=0.05uxx

  • u u u 代表温度
  • x x x 表示 0 ≤ x ≤ L 0 \leq x \leq L 0xL​ 的位置
  • t t t 表示 t > 0 t>0 t>0的时间
  • 边界条件为 u ( t , 0 ) = 0 u(t, 0)=0 u(t,0)=0 u ( t , L ) = 0 u(t, L)=0 u(t,L)=0 t > 0 t>0 t>0
  • 初始条件为 u ( 0 , x ) = sin ⁡ ( π x ) u(0, x)=\sin (\pi x) u(0,x)=sin(πx) 对于 0 ≤ x ≤ L 0 \leq x \leq L 0xL
  • b b b 表示 b > 0 b>0 b>0 的扩散系数

代码求解:

import numpy as np
import matplotlib.pyplot as pltL = 1  
T = 1  
m = 5  
n = 5  
h = L / m  
k = T / n  
b = 0.05  
mu = k / h**2  c = b * mu
if c <= 0 or c >= 0.5:print('Scheme is unstable')v = np.zeros((m + 1, n + 1))
ic1 = lambda x: np.sin(np.pi * x)for j in range(1, m + 2):v[0, j - 1] = ic1((j - 1) * h)b1 = lambda t: 0  # L.B.C
b2 = lambda t: 0  # R.B.Cfor i in range(1, n + 2):v[i - 1, 0] = b1((i - 1) * k)v[i - 1, n] = b2((i - 1) * k)for i in range(n):for j in range(1, m):v[i + 1, j] = (1 - 2 * b * mu) * v[i, j] + b * mu * v[i, j + 1] + b * mu * v[i, j - 1]x = np.linspace(0, L, m + 1)
t = np.linspace(0, T, n + 1)
X, T = np.meshgrid(x, t)fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, T, v, cmap='viridis')
ax.set_xlabel('Space X')
ax.set_ylabel('Time T')
ax.set_zlabel('V')
plt.title('Python for Heat')
plt.show()

接上例,初始条件改为:

对于 0 ≤ x ≤ L 0 \leq x \leq L 0xL

u ( 0 , x ) = { 2 x if  x < 0.5 2 ( 1 − x ) 否则  u(0, x)= \begin{cases}2 x & \text { if } x<0.5 \\ 2(1-x) & \text { 否则 }\end{cases} u(0,x)={2x2(1x) if x<0.5 否则 

代码数值解:

import numpy as np
import matplotlib.pyplot as pltL = 1  
T = 1  
m = 5  
n = 5  
h = L / m  
k = T / n  
b = 0.05  
mu = k / h ** 2 c = b * mu
if c <= 0 or c >= 0.5:print('Scheme is unstable')v = np.zeros((m + 1, n + 1))
ic1 = lambda x: 2 * x
ic2 = lambda x: 2 * (1 - x)x = np.linspace(0, L, m + 1)
x = np.linspace(0, L, m + 1)
for j in range(1, m + 2):if x[j - 1] < 0.5:v[0, j - 1] = ic1(x[j - 1])  else:v[0, j - 1] = ic2(x[j - 1])  b1 = lambda t: 0  # L.B.C
b2 = lambda t: 0  # R.B.Cfor i in range(1, n + 2):v[i - 1, 0] = b1((i - 1) * k)v[i - 1, n] = b2((i - 1) * k)for i in range(n):for j in range(1, m):v[i + 1, j] = (1 - 2 * b * mu) * v[i, j] + b * mu * v[i, j + 1] + b * mu * v[i, j - 1]# Visualization
x = np.linspace(0, L, m + 1)
t = np.linspace(0, T, n + 1)
X, T = np.meshgrid(x, t)fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, T, v, cmap='viridis')
ax.set_xlabel('Space X')
ax.set_ylabel('Time T')
ax.set_zlabel('V')
plt.title('Python for Heat ')
plt.show()

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python微磁学磁倾斜和西塔规则算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076142

相关文章

Python 字符串占位

在Python中,可以使用字符串的格式化方法来实现字符串的占位。常见的方法有百分号操作符 % 以及 str.format() 方法 百分号操作符 % name = "张三"age = 20message = "我叫%s,今年%d岁。" % (name, age)print(message) # 我叫张三,今年20岁。 str.format() 方法 name = "张三"age

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

一道经典Python程序样例带你飞速掌握Python的字典和列表

Python中的列表(list)和字典(dict)是两种常用的数据结构,它们在数据组织和存储方面有很大的不同。 列表(List) 列表是Python中的一种有序集合,可以随时添加和删除其中的元素。列表中的元素可以是任何数据类型,包括数字、字符串、其他列表等。列表使用方括号[]表示,元素之间用逗号,分隔。 定义和使用 # 定义一个列表 fruits = ['apple', 'banana

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

python 喷泉码

因为要完成毕业设计,毕业设计做的是数据分发与传输的东西。在网络中数据容易丢失,所以我用fountain code做所发送数据包的数据恢复。fountain code属于有限域编码的一部分,有很广泛的应用。 我们日常生活中使用的二维码,就用到foutain code做数据恢复。你遮住二维码的四分之一,用手机的相机也照样能识别。你遮住的四分之一就相当于丢失的数据包。 为了实现并理解foutain

python 点滴学

1 python 里面tuple是无法改变的 tuple = (1,),计算tuple里面只有一个元素,也要加上逗号 2  1 毕业论文改 2 leetcode第一题做出来

Python爬虫-贝壳新房

前言 本文是该专栏的第32篇,后面会持续分享python爬虫干货知识,记得关注。 本文以某房网为例,如下图所示,采集对应城市的新房房源数据。具体实现思路和详细逻辑,笔者将在正文结合完整代码进行详细介绍。接下来,跟着笔者直接往下看正文详细内容。(附带完整代码) 正文 地址:aHR0cHM6Ly93aC5mYW5nLmtlLmNvbS9sb3VwYW4v 目标:采集对应城市的

python 在pycharm下能导入外面的模块,到terminal下就不能导入

项目结构如下,在ic2ctw.py 中导入util,在pycharm下不报错,但是到terminal下运行报错  File "deal_data/ic2ctw.py", line 3, in <module>     import util 解决方案: 暂时方案:在终端下:export PYTHONPATH=/Users/fujingling/PycharmProjects/PSENe