改进位删除谜题的求解方法

2024-06-19 18:12

本文主要是介绍改进位删除谜题的求解方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

问题背景

给定长度为 n 的二进制向量,如何删除恰好 n/3 个位,使剩余二进制向量的不同数量最小化。该问题被称为“位删除谜题”。

以下是该问题的示例:

  • 对于 n = 3 的情况,最优解是 2,对应两个不同的向量 11 和 00。
  • 对于 n = 6 的情况,最优解是 4。
  • 对于 n = 9 的情况,最优解是 6。
  • 对于 n = 12 的情况,最优解是 10。

对于较小的 n,这个问题可以通过暴力搜索法求解。但是当 n 变大时,暴力搜索法将变得非常耗时。

解决方案

为了提高求解效率,我们可以使用一种称为“贪婪算法”的方法。贪婪算法是一种通过在每一步中做出局部最优选择来寻找全局最优解的方法。

在该问题中,贪婪算法可以如下实现:

  1. 首先,将所有长度为 n 的二进制向量按字典序排列。
  2. 然后,从排列的第一个向量开始,依次考虑每个向量。
  3. 对于每个向量,如果它与已经选择的向量不同,则将其添加到选择的向量列表中。
  4. 重复步骤 3,直到选择的向量列表中包含所有不同的向量。

这种贪婪算法可以保证找到最优解。但是,它仍然需要遍历所有的向量,因此时间复杂度仍然很高。

为了进一步提高求解效率,我们可以使用一种称为“回溯法”的方法。回溯法是一种通过尝试所有可能的解决方案并回溯到上一步来寻找最优解的方法。

在该问题中,回溯法可以如下实现:

  1. 首先,将所有长度为 n 的二进制向量按字典序排列。
  2. 然后,从排列的第一个向量开始,依次考虑每个向量。
  3. 对于每个向量,如果它与已经选择的向量不同,则将其添加到选择的向量列表中。
  4. 如果选择的向量列表中包含所有不同的向量,则这是一个解。
  5. 否则,继续考虑下一个向量。
  6. 如果考虑到了最后一个向量,则回溯到上一步并尝试另一个向量。

这种回溯法可以保证找到最优解。而且,由于它只需要遍历一部分向量,因此时间复杂度要比贪婪算法低。

代码例子

def solve(n):"""求解位删除谜题。参数:n: 二进制向量的长度。返回值:最优解。"""# 将所有长度为 n 的二进制向量按字典序排列。vectors = list(product([0, 1], repeat=n))# 使用回溯法搜索最优解。best_solution = Nonebest_size = ndef backtrack(solution, remaining_vectors):nonlocal best_solution, best_size# 如果剩余向量为空,则这是一个解。if not remaining_vectors:if len(solution) < best_size:best_solution = solutionbest_size = len(solution)return# 尝试添加下一个向量。for i, vector in enumerate(remaining_vectors):# 如果该向量与已经选择的向量不同,则将其添加到选择的向量列表中。if vector not in solution:solution.append(vector)backtrack(solution, remaining_vectors[:i] + remaining_vectors[i+1:])solution.pop()backtrack([], vectors)return best_solution# 求解 n = 12 的情况。
n = 12
solution = solve(n)# 打印最优解。
print(f"最优解:{solution}")

这篇关于改进位删除谜题的求解方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075771

相关文章

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

使用JS/Jquery获得父窗口的几个方法(笔记)

<pre name="code" class="javascript">取父窗口的元素方法:$(selector, window.parent.document);那么你取父窗口的父窗口的元素就可以用:$(selector, window.parent.parent.document);如题: $(selector, window.top.document);//获得顶级窗口里面的元素 $(