llama-factory微调工具使用入门

2024-06-19 17:20

本文主要是介绍llama-factory微调工具使用入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、定义

  1. 环境配置
  2. 案例: https://zhuanlan.zhihu.com/p/695287607
  3. chatglm3 案例
  4. 多卡训练deepspeed
  5. llama factory 案例Qwen1.5
  6. 报错

二、实现

  1. 环境配置
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -e '.[torch,metrics]'
如果发生冲突:    pip install --no-deps -e .  

同时对本库的基础安装做一下校验,输入以下命令获取训练相关的参数指导, 否则说明库还没有安装成功

llamafactory-cli train -h

在这里插入图片描述
模型下载与可用性校对

git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git
import transformers
import torch# 切换为你下载的模型文件目录, 这里的demo是Llama-3-8B-Instruct
# 如果是其他模型,比如qwen,chatglm,请使用其对应的官方demo
model_id = "/home/Meta-Llama-3-8B-Instruct"pipeline = transformers.pipeline("text-generation",model=model_id,model_kwargs={"torch_dtype": torch.bfloat16},device_map="auto",
)messages = [{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},{"role": "user", "content": "Who are you?"},
]prompt = pipeline.tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)terminators = [pipeline.tokenizer.eos_token_id,pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]outputs = pipeline(prompt,max_new_tokens=256,eos_token_id=terminators,do_sample=True,temperature=0.6,top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])

在这里插入图片描述
2. 案例: https://zhuanlan.zhihu.com/p/695287607

2.1 数据准备
将该自定义数据集放到我们的系统中使用,则需要进行如下两步操作
a 复制该数据集到 data目录下
b 修改 data/dataset_info.json 新加内容完成注册, 该注册同时完成了3件事
b1 自定义数据集的名称为adgen_local,后续训练的时候就使用这个名称来找到该数据集
b2 指定了数据集具体文件位置
b3 定义了原数据集的输入输出和我们所需要的格式之间的映射关系
在这里插入图片描述
2. 微调:
下载模型
>> git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git
微调

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \--stage sft \--do_train \--model_name_or_path /home/Meta-Llama-3-8B-Instruct \--dataset alpaca_gpt4_zh,identity,adgen_local \--dataset_dir ./data \--template llama3 \--finetuning_type lora \--output_dir ./saves/LLaMA3-8B/lora/sft \--overwrite_cache \--overwrite_output_dir \--cutoff_len 1024 \--preprocessing_num_workers 16 \--per_device_train_batch_size 2 \--per_device_eval_batch_size 1 \--gradient_accumulation_steps 8 \--lr_scheduler_type cosine \--logging_steps 50 \--warmup_steps 20 \--save_steps 100 \--eval_steps 50 \--evaluation_strategy steps \--load_best_model_at_end \--learning_rate 5e-5 \--num_train_epochs 5.0 \--max_samples 1000 \--val_size 0.1 \--plot_loss \--fp16

或者:

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train ./examples/train_lora/llama3_lora_sft.yaml

在这里插入图片描述
在这里插入图片描述
3. 推理

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat ./examples/inferce/llama3_lora_sft.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \--model_name_or_path /home/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--template llama3 \--finetuning_type lora

在这里插入图片描述
4. 批量预测与训练效果评估

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat ./examples/train/llama3_lora_predict.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \--stage sft \--do_predict \--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--dataset alpaca_gpt4_zh,identity,adgen_local \--dataset_dir ./data \--template llama3 \--finetuning_type lora \--output_dir ./saves/LLaMA3-8B/lora/predict \--overwrite_cache \--overwrite_output_dir \--cutoff_len 1024 \--preprocessing_num_workers 16 \--per_device_eval_batch_size 1 \--max_samples 20 \--predict_with_generate

在这里插入图片描述
5. LoRA模型合并导出

CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \--model_name_or_path /home/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--template llama3 \--finetuning_type lora \--export_dir megred-model-path \--export_size 2 \--export_device cpu \--export_legacy_format False
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export ./examples/merge_lora/llama3_lora_sft.yaml

在这里插入图片描述
6. api 调用

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 nohup llamafactory-cli api \--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft \--template llama3 \--finetuning_type lora

项目也支持了基于vllm 的推理后端,但是这里由于一些限制,需要提前将LoRA 模型进行merge,使用merge后的完整版模型目录或者训练前的模型原始目录都可。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 nohup llamafactory-cli api \--model_name_or_path megred-model-path \--template llama3 \--infer_backend vllm \--vllm_enforce_eager>output.log 2>&1 &

在这里插入图片描述

import os
from openai import OpenAI
from transformers.utils.versions import require_versionrequire_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")if __name__ == '__main__':# change to your custom portport = 8000client = OpenAI(api_key="0",base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),)messages = []messages.append({"role": "user", "content": "hello, where is USA"})result = client.chat.completions.create(messages=messages, model="test")print(result.choices[0].message)

在这里插入图片描述
7. 测试

CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval ./examples/train/llama3_lora_eval.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval \
--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \
--template llama3 \
--task mmlu \
--split validation \
--lang en \
--n_shot 5 \
--batch_size 1
  1. chatglm3 案例
    见专题模块

  2. 多卡训练deepspeed
    多卡看llama3_lora_sft_ds0.yaml

  3. 报错

    1,RuntimeError: Failed to import trl.trainer.dpo_trainer because of the following error (look up to see its traceback):
    ‘FieldInfo’ object has no attribute ‘required’
    解决:换干净的环境,重新安装。

这篇关于llama-factory微调工具使用入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075661

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp