第100+12步 ChatGPT学习:R实现KNN分类

2024-06-19 13:12

本文主要是介绍第100+12步 ChatGPT学习:R实现KNN分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于R 4.2.2版本演示

一、写在前面

有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。

答曰:可!用GPT或者Kimi转一下就得了呗。

加上最近也没啥内容写了,就帮各位搬运一下吧。

二、R代码实现KNN分类

(1)导入数据

我习惯用RStudio自带的导入功能:

(2)建立KNN模型

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Convert the target variable to a factor for classification
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)# Define control method for training with cross-validation
trainControl <- trainControl(method = "cv", number = 10)# Fit KNN model on the training set
model <- train(X ~ ., data = trainData, method = "knn", trControl = trainControl, preProcess = "scale")# Predict on the training and validation sets
trainPredict <- predict(model, trainData, type = "prob")[,2]
validPredict <- predict(model, validData, type = "prob")[,2]# Convert true values to factor for ROC analysis
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)# Calculate ROC curves and AUC values
trainRoc <- roc(response = trainData$X, predictor = trainPredict)
validRoc <- roc(response = validData$X, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))print(p)
}
# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

在R语言中,caret包提供了一个通用的接口来训练KNN模型。使用caret的train函数来训练KNN模型时,可以调整多种参数来优化模型的性能:

基本参数:

①formula: 指定模型的公式,如Y ~ .,表示使用数据框中的所有其他变量来预测Y。

②data: 提供包含训练数据的数据框。

③method: 对于KNN模型,这个参数应设置为"knn"。

④preProcess: 预处理步骤,常用的包括标准化("scale")和中心化("center"),对于KNN这一步非常重要因为KNN依赖于变量的距离度量。

⑤trControl: 一个trainControl对象,定义了模型训练的各种控制策略,如交叉验证的类型和重复次数。

trainControl 函数的参数:

①method: 训练的方法,如交叉验证("cv"),重复交叉验证("repeatedcv"),留一交叉验证("LOOCV")等。

②number: 对于"cv"和"repeatedcv",这个参数定义了折数。

③repeats: 当使用"repeatedcv"时,定义重复的次数。

④search: 参数搜索方法,默认为"grid"。也可以设置为"random"进行随机搜索。

⑤savePredictions: 是否保存预测结果,通常用于后续分析。

模型性能调整参数:

使用KNN时,最关键的参数之一是邻居的数量(K值)。这可以通过train函数的以下参数来调整:

①tuneLength: 这个参数决定了在参数搜索中考虑多少个不同的K值。

②tuneGrid: 这是一个数据框,可以自定义K值的具体范围,例如expand.grid(k = c(1, 5, 10))

结果输出(默认参数):

三、KNN调参方法

如前所述,KNN的关键参数就是K值,所以可以对其进行一个暴力测试,比如取值1到10:

# 定义交叉验证的控制方法,启用网格搜索
trainControl <- trainControl(method = "cv", number = 10)
# 定义K值的网格搜索范围
tuneGrid <- expand.grid(k = 1:10)
# 在训练集上拟合KNN模型,指定网格搜索的K值
model <- train(X ~ ., data = trainData, method = "knn", trControl = trainControl,tuneGrid = tuneGrid, preProcess = "scale")
# 查看模型结果,找出最优的K值
print(model)

解读:

定义交叉验证的控制方法:使用trainControl函数设定交叉验证的详细参数。

定义K值的网格:使用tuneGrid参数在train函数中指定K值的范围。

拟合模型:使用train函数训练模型,同时应用预处理步骤(比如标准化数据),以确保每个特征在距离计算中具有等同的权重。

结果输出:

注意:用了caret包的train函数,并且通过网格搜索指定了一系列的参数(如K值的范围),那么这个函数会自动选择表现最好的参数配置来训练最终的模型。train函数的输出即是基于你提供的训练数据和参数搜索范围内表现最优的模型。因此,当你调用predict函数进行预测时,使用的就是这个最优化的模型。所以,下面的代码不变。

结果吧,跟之前的完全一样:

因为caret包对于KNN模型默认进行一系列的K值尝试,通常这个范围是1到最多的邻居数,但具体的最大K值依赖于caret的内部设置。在大多数情况下,它会尝试如1, 5, 7, 9等常用的K值。所以,我们默认参数的时候,其实软件自动给我们寻找最优K值了。可以用这个代码输出最有K值:

# Print the best K value used by the model
best_k <- model$bestTune$k
cat("The best K value found is:", best_k, "\n")

K值就是9,跟我们自行调参的一致。

那我们猛点,把K的范围设置的宽一些:

# 定义交叉验证的控制方法,启用网格搜索
trainControl <- trainControl(method = "cv", number = 10)
# 定义K值的网格搜索范围
tuneGrid <- expand.grid(k = 1:20)
# 在训练集上拟合KNN模型,指定网格搜索的K值
model <- train(X ~ ., data = trainData, method = "knn", trControl = trainControl,tuneGrid = tuneGrid, preProcess = "scale")
# 查看模型结果,找出最优的K值
print(model)

结果:

K=19,性能指标如下,似乎大同小异:

四、最后

数据嘛:

链接:https://pan.baidu.com/s/1rEf6JZyzA1ia5exoq5OF7g?pwd=x8xm

提取码:x8xm

这篇关于第100+12步 ChatGPT学习:R实现KNN分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075127

相关文章

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

springboot filter实现请求响应全链路拦截

《springbootfilter实现请求响应全链路拦截》这篇文章主要为大家详细介绍了SpringBoot如何结合Filter同时拦截请求和响应,从而实现​​日志采集自动化,感兴趣的小伙伴可以跟随小... 目录一、为什么你需要这个过滤器?​​​二、核心实现:一个Filter搞定双向数据流​​​​三、完整代码