POSIX信号量以及读写者模型/环形队列

2024-06-19 10:52

本文主要是介绍POSIX信号量以及读写者模型/环形队列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

POSIX信号量

POSIX信号量和SystemV信号量作用相同,都是用于同步操作,达到无冲突的访问共享资源目的。 但POSIX可以用于线程间同步,他的本质是一个计数器,对共享资源进行等待或释放


POSIX信号量的重要概念

1.计数器:信号量维护一个计数器,它表示当前可用的资源数量

2.释放 P操作:  尝试将信号量的值减1。如果信号量的值大于0,则减1并继续执行。如果信号量的值为0,则阻塞等待,直到信号量的值大于0。

3.等待 V操作:将信号量的值加1。如果有线程或进程在等待信号量,则唤醒其中一个。



POSIX信号量的种类

二元信号量:当计数器只能为1或0时,就是一个互斥锁,0就是阻塞,1就是非阻塞

计数信号量:当计数器大于1时,表示资源的可用数量,这个计数器表示可以同时访问共享资源的线程或进程的数量


POSIX信号量API使用

头文件包括

#include <semaphore.h>

1.sem_init

 sem_init用于初始化信号量计数器的多少

int sem_init(sem_t *sem, int pshared, unsigned int value);

 sem: 指向信号量的指针

pshared: 决定是否在进程间共享 若为0 则在线程进行共享 若不为0 则在进程之间共享

value: 信号量的多少 决定为二元信号量还是计数信号量

2.sem_wait

sem_wait(sem_t * sem)

对信号量进行P操作,等待

sem:指向信号量的指针

3.sem_post

sem_post(sem_t * sem)

对信号量进行V操作,释放

sem:指向信号量的指针

4.sem_destroy

 int sem_destroy(sem_t *sem);

销毁一个信号量

sem:指向信号量的指针


环形队列

这里的环形队列是基于生产者消费模型实现的

如图所示

如图是一个环形队列,生产者和消费者都是顺时针走,白色代表没有数据,黑色代表有数据, 生产者在消费者前生产,消费者在生产者后消费,这就是生产消费模型的环形队列

根据上文讲述的信号量

我们就可以把环形队列中的资源用信号量划

也就是_consumer_data=4   _product_data=4

那么也就是说 

1.只有_consumer_data>0时,生产者才能生产

2.只有_product_data>0时,消费者才能进行消费

对生产者与消费者之间的关系进行一个总结

消费者与消费者-----------互斥

生产者与生产者-----------互斥

生产者与消费者-----------互斥 无需维护

这里需要单独讲解一下,为什么生产者与消费者之间的互斥是无需维护的呢,

很简单,因为生产者和消费者永远都不会访问到同一块资源!!!

因为在环形队列中,生产者消费者访问同一块数据的时候就是环形队列为全空,或者全满的时候

如图:


实现

为了实现环形队列,我们需要用到两个锁,以及用一个vector来维护环形队列,另外在单独标记生产者和消费者的下标

    std::vector<T> _ring_queue;
    int _cap; // 环形队列的容量上限

    // 2. 生产和消费的下标
    int _productor_step;
    int _consumer_step;

    // 3. 定义信号量
    sem_t _product_sem; // 生产者关心
    sem_t _consumer_sem; // 消费者关心

    // 4. 定义锁,维护多生产多消费之间的互斥关系
    pthread_mutex_t _productor_mutex;
    pthread_mutex_t _consumer_mutex;

入队列(生产行为)

分为三个步骤

1.申请信号量 2.竞争生产锁 3.进行生产

 void Enqueue(const T &in){// 生产行为P(_room_sem);Lock(_productor_mutex);// 一定有空间!!!_ring_queue[_productor_step++] = in; // 生产_productor_step %= _cap;Unlock(_productor_mutex);V(_data_sem);}

这里需要注意的是

进行生产任务的时候,我们只需对_productor_step进行%操作便可以进行环形操作了,这个操作我也在之前的设计循环队列中有所讲解算法题详解:设计循环队列-CSDN博客

出队列(消费行为)

1.申请信号量 2.竞争消费锁 3.进行消费

void Pop(T *out){// 消费行为P(_data_sem);Lock(_consumer_mutex);*out = _ring_queue[_consumer_step++];_consumer_step %= _cap;Unlock(_consumer_mutex);V(_room_sem);}

 与生产行为相似,只需如法炮制便可

代码

#pragma once#include <iostream>
#include <string>
#include <vector>
#include <semaphore.h>
#include <pthread.h>// 单生产,单消费
// 多生产,多消费
// "321":
// 3: 三种关系
// a: 生产和消费互斥和同步
// b: 生产者之间:
// c: 消费者之间:
// 解决方案:加锁
// 1. 需要几把锁?2把
// 2. 如何加锁?
template<typename T>
class RingQueue
{
private:void P(sem_t &sem){sem_wait(&sem);}void V(sem_t &sem){sem_post(&sem);}void Lock(pthread_mutex_t &mutex){pthread_mutex_lock(&mutex);}void Unlock(pthread_mutex_t &mutex){pthread_mutex_unlock(&mutex);}
public:RingQueue(int cap): _ring_queue(cap), _cap(cap),  _productor_step(0), _consumer_step(0){sem_init(&_product_sem, 0, _cap);sem_init(&_consumer_sem, 0, 0);pthread_mutex_init(&_productor_mutex, nullptr);pthread_mutex_init(&_consumer_mutex, nullptr);}void Enqueue(const T &in){// 生产行为P(_product_sem);Lock(_productor_mutex);// 一定有空间!!!_ring_queue[_productor_step++] = in; // 生产_productor_step %= _cap;Unlock(_productor_mutex);V(_consumer_sem);}void Pop(T *out){// 消费行为P(_product_sem);Lock(_consumer_mutex);*out = _ring_queue[_consumer_step++];_consumer_step %= _cap;Unlock(_consumer_mutex);V(_consumer_sem);}~RingQueue(){sem_destroy(&_product_sem);sem_destroy(&_consumer_sem);pthread_mutex_destroy(&_productor_mutex);pthread_mutex_destroy(&_consumer_mutex);}
private:// 1. 环形队列std::vector<T> _ring_queue;int _cap; // 环形队列的容量上限// 2. 生产和消费的下标int _productor_step;int _consumer_step;// 3. 定义信号量sem_t _product_sem; // 生产者关心sem_t _consumer_sem; // 消费者关心// 4. 定义锁,维护多生产多消费之间的互斥关系pthread_mutex_t _productor_mutex;pthread_mutex_t _consumer_mutex;
};

这篇关于POSIX信号量以及读写者模型/环形队列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074821

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应