【自动驾驶技术】自动驾驶汽车AI芯片汇总——TESLA篇(FSD介绍)

2024-06-19 07:36

本文主要是介绍【自动驾驶技术】自动驾驶汽车AI芯片汇总——TESLA篇(FSD介绍),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本篇文章是这个自动驾驶汽车AI芯片系列的第三篇,也算终于轮到特斯拉出场了!(Respect)

自动驾驶汽车AI芯片系列目录:

1. NVIDIA篇

2. 地平线篇

提到特斯拉,大家估计第一反应会想到“FSD”,没错!本文的主角就是“FSD”,或者更准确来说应该是“FSD芯片”。

FSD全称是Full Self-Driving(多么直奔主题),但在开始介绍FSD之前,我想先聊聊特斯拉的自动驾驶平台——HW。

这里的HW就纯是HardWare的意思,与某为毫不相干。

1. TESLA 自动驾驶平台

特斯拉的硬件平台(Hardware Platform,简称HW)是指在其电动汽车中用于自动驾驶功能的计算和传感系统。特斯拉的硬件平台经历了几代的演变,每一版都代表着技术上的进步和对自动驾驶能力的提升:

第一代:HW 1.0

  • 发布时间:2014年
  • 方案特点:初期版本,包含了摄像头、超声波传感器和雷达。
  • SoC芯片:使用的是Mobileye的EyeQ3芯片,主要负责视觉处理,但后来特斯拉和Mobileye因理念不合而分道扬镳。

当时Mobileye客户非常多,估计也没太把特斯拉放在心上。现在的Mobileye……呵呵。

第二代:HW 2.0 / HW 2.5

  • 发布时间:2016年
  • 方案特点:引入了更多的传感器,包括前置三目摄像头、前后雷达、以及环绕车身的超声波传感器,增强了整体感知能力。
  • SoC芯片:
    • HW2.0:采用了NVIDIA 的Drive PX2平台。
    • HW2.5:在HW2.0的基础上增加了额外的NVIDIA Tegra Parker芯片于增强计算能力。

第三代:HW 3.0 (转折点,FSD引入)

  • 发布时间:2019年
  • 方案特点:特斯拉自研的FSD芯片首次亮相,标志着特斯拉开始全面掌握从芯片设计到软件开发的全栈技术。
  • SoC芯片:特斯拉定制的FSD芯片,采用了双核设计,每个核心都有独立的CPU、GPU和神经网络加速器,基于14纳米工艺制造,大幅提升了计算能力和能效比。

第四代:HW 4.0

  • 发布时间:2023年
  • 方案特点:NNA的数量从2个增加到3个,工作频率也从2.0GHz提升至2.2GHz,这有助于更高效地处理深度学习任务,尤其是针对视觉数据的分析。摄像头的数量和质量均有所提升,从8颗120万像素摄像头升级至7颗500万像素摄像头,这不仅提高了图像清晰度,还增加了探测距离,从200多米提升至424米。
  • SoC芯片:特斯拉的下一代FSD芯片,预计采用更先进的制程技术(如7纳米或更小),算力大幅提升5倍,可能达到700多TOPS。有报道指出,HW4.0的FSD芯片可能由台积电采用4纳米或5纳米工艺生产。

从上面HW的发展过程我们可以看出:从HW 3.0开始,特斯拉正式搭载自研的FSD芯片,这家汽车制造公司也掌握了芯片及软件的设计能力。当然,这非常符合马斯克的作风。

由于HW 4.0的公开资料还比较少,本文将基于HW 3.0来说明,也就是大约在特斯拉2019年的技术水平。如果后面有更多的HW 4.0的技术细节,我会再补充本文的内容!

2. HW 3.0架构

特斯拉的Hardware 3.0(简称HW 3.0)是特斯拉自动驾驶计算机的一个重大迭代,它在2019年开始装备于特斯拉的新生产车辆中,用以取代之前的Hardware 2.5。它是专门为特斯拉的Autopilot和未来的完全自动驾驶(Full Self-Driving,FSD)功能设计的。

2.1 架构与设计

HW 3.0包括两套完全独立的系统,每套系统都配备了独立的CPU、GPU、NNA(神经网络加速器)以及内存,两套系统中的一个作为主系统运行,另一个作为热备份,在主系统出现故障时立即接管,这样可以实现冗余,增加安全性。

双系统设计的另一个好处就是互相校验,对于同一个驾驶场景,两套系统经过一系列的感知、规划算法(或者一整个端到端算法),所得到的驾驶决策应该是一致的,这也进一步提升了自动驾驶的功能安全冗余。

2.2 性能
  • 算力:HW 3.0的算力达到了每秒144万亿次运算(144 TOPS),相比之下,Hardware 2.5的算力约为每秒11 TOPS,性能提升了大约13倍。
  • 功耗:尽管性能大幅提高,但HW 3.0的功耗仅从Hardware 2.5的60W增加到72W。
  • 视频处理能力:HW 3.0能够处理每秒高达2,300帧的图像数据,比Hardware 2.5的每秒200帧有了显著提升。
2.3 兼容性与升级
  • 兼容性:特斯拉设计了HW 3.0,使其可以无缝替换Hardware 2.5,这意味着特斯拉可以通过软件更新解锁更多功能,而无需更换整个硬件系统。
  • 升级路径:特斯拉车主可以通过付费服务将旧的Hardware 2.5升级至HW 3.0,从而获得更强大的计算能力和未来的FSD功能。

3. FSD芯片

特斯拉的全自动驾驶FSD芯片是该公司为了实现自动驾驶技术而自行设计的专用集成电路(ASIC)。

这款芯片最初在2019年推出,用于取代之前使用的英伟达GPU,旨在提高计算性能和效率,以支持特斯拉车辆中的Autopilot和FSD功能。以下是关于特斯拉FSD芯片的一些关键细节:

3.1 架构和组件

FSD芯片包含多个处理单元,包括以下:

  • 3个四核Cortex-A72集群,共计12个CPU核心,运行频率为2.2GHz。
  • 1个Mali G71 MP12 GPU,工作频率为1GHz,支持FP16和FP32浮点运算。
  • 2个神经网络加速器(NNA),用于深度学习推理,这是FSD芯片的核心部分,用于处理自动驾驶所需的大量视觉和传感器数据,运行频率为2GHz。

  • 32MB的SRAM缓存,用于存储模型权重和加速数据访问。
  • ISP和PHY各种通讯接口。

3.2 制造和工艺

HW 3.0的FSD芯片采用三星的14纳米FinFET工艺制造。

3.3 第二代FSD芯片(FSD 2.0 / HW4.0)
  • 制造工艺:使用了更先进的7纳米制程技术,有报道甚至提及了4纳米或更先进的3纳米工艺。
  • 性能提升:相对于初代FSD芯片,第二代芯片的性能预计提升了三倍以上,这得益于更密集的晶体管布局和优化的电路设计。
  • 设计与功能:虽然具体的细节尚未完全公开,但可以预期的是,新一代芯片将包含更强大的CPU、GPU和NPU,以及优化的内存架构,以支持更复杂的神经网络和实时数据处理需求。

4. 总结

特斯拉的FSD芯片代表了该公司在垂直整合和自动驾驶技术方面的重大投资。通过设计自己的芯片,特斯拉能够优化硬件和软件之间的协同工作,从而实现更高的效率和更强大的自动驾驶功能。随着时间的推移,特斯拉继续更新其FSD硬件和软件,以实现更高级别的自动驾驶能力。

这篇关于【自动驾驶技术】自动驾驶汽车AI芯片汇总——TESLA篇(FSD介绍)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074394

相关文章

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4