CHATGPT说这个运算放大器是比较器,我说这是运放典型的同相比例放大器,一个光控电路分析

本文主要是介绍CHATGPT说这个运算放大器是比较器,我说这是运放典型的同相比例放大器,一个光控电路分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

纠正

光控电路

图1 光控电路

该电路来自一个问题,链接见文末。
因GPT的分析有误,特此纠正。
引用图片和答案用于分析,如侵权请联系本人。

电路分析:

该电路为光控灯电路,灯光为LED发光二极管 D。
光敏电阻RG的阻值和光线强度关系,光线暗,电阻大,光线亮则电阻小;光敏电阻的暗电阻在1000K左右,亮电阻在几K到几十K.
UO1的电压为和光线强度敏感的电压,R1为固定电阻,因此:
光线暗,RG的阻值大,电阻分压的串联电路中,电阻大的,分的电压大,因此UO1大,接近5V
光线强,RG的阻值小,分到的电压小,则UO1小,接近0V,R1为调整UO1的电阻,调节使UO1在光线亮时,UO1电压在1-3V之间为宜,一般取值10K-100K。

LM358为双运放,不是轨到轨运放,且是双电源运放用于单电源电路中,其输出电压最高约3.8V,就是输出电源电压达不到5V,输出能接近5V的是轨到轨运放。

UA应为U1A,是LM358的2个运放中的1个,其2脚IN-与1脚OUT相连,构成典型的运放跟随器电路,跟随器的作用是阻抗变换,UO2近似等于UO1

U1B为典型的同相放大电路,R4和R为放大器的放大倍速-1,用于调整UO3输出电压,也是UO2的放大比例或放大倍数。UO3为UO2*(1+R4/R),比较器的输出是突变的阶跃的,而运放输出电压的变化是连续的,不会因UO2的变化而突变。UO3的点灯电压和采用LED的颜色有关,采用红色发光二极管时,UO3需要在1.8V以上才能点亮发光二极管;采用白色发光二极管时,UO3需要在3.2V以上。

R6的作用是调节LED发光二极管的工作电流,电阻取值范围在几百欧姆到几K欧姆,对应的电流范围是几百微安到几毫安。

R2是平衡电阻,使U1B的IN+和IN-的电流尽量相等,取值为R4*R/(R4+R),取接近的电阻即可。

分析:
光线暗时,UO1电压高,UO2同UO1,当UO3大于点灯电压时,(和UO1,R4与R有关),则发光二极管D点亮

光线亮时,UO1为低电压,UO2也为低电压,UO3输出电压降低,低于点灯电压时,则发光二极管D熄灭。

通过调节R1,或者R4与R的阻值,可以调节光线暗到什么程度时,发光二极管点亮。

灯亮

以下为NI Multisim 14.3仿真结果
运放的IN+与IN-虚短,因此IN+/IN-相同的情况下,无法比较,图2图3电路为运放的典型同相放大电路。
LED发光二极管点亮

图2:IN+ = IN- 为1V,放大倍数为3,运放输出电压3V,LED发光二极管点亮

灯灭

LED发光二极管熄灭

图3:IN+ = IN- 为0.5V,放大倍数为3,运放输出电压1.5V,LED发光二极管熄灭

CHATGPT关于运放的分析是错误的,在此纠正

GPT答案

该回答引用ChatGPT4o, 如有帮助,还请采纳。
这个电路是一个基于光敏电阻的光控灯电路。让我们逐步分析这个电路的工作原理。

电路组成
光敏电阻(RG)和电阻(R1):形成一个分压器,用来检测光强度的变化。
运算放大器(UA, U1B):两个运算放大器(UA和U1B)用于信号放大和比较。这里使用的是LM358双运算放大器。
电阻(R2, R4, R6):用于调整运算放大器的增益和输出电流限制。
LED灯(D):受控于运算放大器的输出,用于指示光控灯的开关状态。
工作原理
光敏电阻和电阻分压器:

光敏电阻(RG)的阻值随着光照强度的变化而变化。当光照强时,RG的阻值变小;当光照弱时,RG的阻值变大。
电阻(R1)和光敏电阻(RG)构成了一个分压电路,产生一个与光强度成反比的电压(U01)。
运算放大器UA:

运算放大器UA的正输入端连接到分压器的输出(U01)。
运算放大器UA配置成一个电压跟随器或缓冲器,其输出电压(U02)基本上与输入电压(U01)相同。
这样做的目的是稳定电压信号并提供一定的驱动能力。
运算放大器U1B:

运算放大器U1B配置为一个比较器。【此说法是错误的】
U1B的正输入端连接到UA的输出(U02),即光敏电阻的电压信号。
U1B的负输入端连接到一个设定的参考电压,通过电阻分压器(R和R4)设置。
当光强度变化导致U02的电压超过参考电压时,U1B的输出变高;当U02的电压低于参考电压时,U1B的输出变低。
LED灯(D):

运算放大器U1B的输出连接到一个限流电阻(R6)再连接到LED灯(D)。
当U1B输出高电平时,LED灯点亮;当U1B输出低电平时,LED灯熄灭。
总结
当环境光照强度变化时,光敏电阻的阻值发生变化,导致分压器输出电压(U01)变化。
这个变化的电压信号经过运算放大器UA缓冲后输入到运算放大器U1B的正输入端。
运算放大器U1B比较输入电压与设定的参考电压,控制其输出电平。
最终,运算放大器U1B的输出电平决定了LED灯的点亮与熄灭状态。
这个电路的核心在于利用光敏电阻对光强度的感应,通过运算放大器的放大和比较功能,实现对LED灯的光控开关功能。

问题链接:
电路原理(关键词-工作原理)

这篇关于CHATGPT说这个运算放大器是比较器,我说这是运放典型的同相比例放大器,一个光控电路分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074076

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S