CDA二级(Level II)数据分析师——考试内容梳理四

2024-06-19 01:12

本文主要是介绍CDA二级(Level II)数据分析师——考试内容梳理四,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

定额抽样不属于概率抽样类型抽样就是分群抽样

假设检验中,两类错误的概率相加后不等于1,
在样本量增大的条件下,两类错误的概率可以同时减小,
通常控制第一类错误的概率 ;(去真

假设检验使用的是反证法,即先提出一个关于总体参数的假设,然后用样本数据来检验这个假设是否可能为真

在假设检验中,左侧检验为>=,右侧检验为<=,指原假设

区间估计是使用顺推法,即先不对总体参数提出具体假设,而是基于样本统计量来估计总体参数可能存在的区间

假设在T分布下,实际算出来的统计量的值为2.75,P=T.DIST(2.75:2:TRUE)
P值的实质是当前的临界点与分布曲线所围城的曲线面积,求累积分布

在大样本(n)下进行某列(A)均值的区间估计,点估计值为α,显著性水平为0.05
Z0.025为给定的显著性水平下的正太分布的临界值:
EXCEL计算:α±Z0.025*STDEV.S(A:A)/(AQRT(n),大样本为n小样本为n-1

区间估计的结果为点估计的值加减一定倍数的标准差

单因素方差分析中,当p<0.05,则接受备择假设,即至少有两组之间的均值有显著性差异

单因素方差分析的假设
1.每个总体服从正太分布
2.每个总体的方差相同
3.从每个总体中抽取的样本是相互独立的

在不知道具体比例的情况下,通常取P=0.5来计算最大样本量

方差分析主要用来比较两个或多个组的平均数差异,通常自变量是分类型,因变量是连续型

相对于主成分分析而言,因子分析时更偏向解释的分析时,需要进行因子分析,而类似于综合排名、综合打分这样无需进行解释的分析可以进行主成分分析

因子分析通常不适用于预测模型 ,它更侧重于变量的可解释性非预测准确性

进行主成分分析(PCA)之前,如果变量的取值范围相差很大,先对每个变量进行中心化,然后使用相关系数矩阵代替协方差矩阵计算主成分;

多元线性回归模型m,输出模型的残差图:plt.scatter(m.predict(data),m.resid),
resid:残差序列

在进行逻辑回归模型的系数解释时,应借助优势比的概念来进行,所以1作为参考进行解释;

在逻辑回归中,使用classification_report输出分类报告时要求输入的是真实标签和预测标签
classification_report(y,y_hat) 预测;

在逻辑回归模型中,使用约登指数来确定最优阈值,具体是选择使得==(tpr-fpr)==达到最大的时候的阈值作为最优阈值

逻辑回归通过logit模型转换后,输出0-1的概率值

目标函数包括决策变量;

高斯马尔科夫假设中,线性回归对·残差序列·的假设包括:不相关、正态性和同方差

岭回归和Lasso回归属于·收缩方法·,
可以处理多重共线性问题,但会改变原有回归模型

向后回归法要求样本量必须大于自变量的个数,否则模型会过拟合

QQ检验确保扰动性服从正太分布

时间序列差分操作中,包括·阶次差分·主要是用来消除长期趋势的影响,而·步次差·分主要是用来消除季节效应的影响先阶次再步次

在对时间序列模型进行评估时,常用的方法是残差的噪声检验

聚类算法:A(2,3) B(5,-1)
欧氏距离求斜线,结果为5
曼哈顿距离求绝对值,结果为|5-2|+|-1-3|=7

在使用Excel计算假设检验中对应的p值时,使用的函数是DIST(),计算临界值时使用的函数是INV();

根据数据收集方式的分类,分为实验数据和观测数据观测数据又分为追溯型跟踪数据

数据治理域包括:数据战略与规划、组织架构与职责、管理流程与管理制度;

数据应用域包含:监管报表应用、精准营销应用、产品创新应用;

设计逻辑模型时,要遵循范式的设计概念,减少冗余,完整性和可扩展性;

OLAP系统的响应时间合理OLTP系统对响应时间要求高

概念模型描述企业内主要业务的实体及实体间的业务关系,不需要对实体属性具象化;
学校→学生→应用

在信息不足的情况下,对照其它信息源进行修正;

指标不足的情况下,对照其它信息源进行修正;

指标体系包括:根指标、组合指标、派生指标,用户指标属于维度库;
根指标:销售额、净利润
组合指标:客单价=销售额/下单用户数
派生指标:客户流失率=流失用户数/总用户数,流失用户数为组合指标
根指标+维度指标→组合指标+根指标→派生指标

连续型变量
中心标准化Xi-mean(x)/Stdx
归一化Xi-min(x)/max(x)-min(x)

分箱
等宽取值范围一样
等深观察值数量一样

期望频数=(行数/样本量列数/样本量)样本量=(行数列数)/样本量)
卡方贡献=(观察频数-期望频数)2/期望频数) 远大于增大贡献率
卡方检验自由度=(行数-1)
(列数-1)

Python抽样:
1.random.sample:无放回→replace→False
2.random.choice:没有指定replace,默认True,有放回;

apply方法不能用来填充缺失值,lambda函数针对的是一个元素值,而不是一个series对象;

data_raw[‘gender’]=data_raw[‘gender’].replace({‘Male’:1,‘Female’:0}),
可以用于数据编码,并未处理缺失值;

sklearn+PCA:
preprocessing.scale(data):标准化到均值0方差1,不是归一化,是中心化
PCA(n_comporents=9):将数据降维到9个成分,不是降维了
pca.explanined_variance_:输出降维后各主成分的方差
pca.explanined_variance_:各主成分方差占总差分的比例

Python中删除多列的方式为:
df.drop(["A’,‘B’].axix=1),指定列
df.drop(columns=[‘A’,‘B’]),指定列名

这篇关于CDA二级(Level II)数据分析师——考试内容梳理四的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073592

相关文章

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库