异步爬虫:aiohttp 异步请求库使用:

2024-06-19 00:36

本文主要是介绍异步爬虫:aiohttp 异步请求库使用:,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用requests 请求库虽然可以完成爬虫业务,但是对于异步任务来说,它是做不到的, 这时候我们需要借助 aiohttp 异步请求库来完成异步爬虫的编写:

话不多说,直接看示例:

注意:楼主使用的python版本是最新的,3.12的py版本, 另外pycharm使用的也是最新版的 2024版本的。 请务必与我保持一致, 否则会报很多莫名其妙的异常信息。

下载:

使用aiohttp 异步请求库请先pip 下载:

pip install aiohttp

基本实例:

import asyncio
import aiohttpasync def get(session, url):async with session.get(url) as response:return await response.text(), response.statusasync def test():url = "http://www.baidu.com"async with aiohttp.ClientSession() as session:html_text, status = await get(session, url)print(html_text)print(status)if __name__ == '__main__':asyncio.run(test())

以上代码示例首先我们需要导入两个库,分别是aiohttp,  asyncio,  因为要实现异步任务,而启动异步需要使用asyncio, 关于异步的知识点请自行查阅补充。

其次使用 async 关键字定义了一个 get 异步函数, 它接受了 session, url 两个参数, 而session则为aiohttp 中客户端ClientSession() 对象, 因为aiohttp 它提供了两套业务功能, 分别是服务端和客服端, 服务端主要就是实现处理客户端发送请求的异步业务, 而客户端,就是发送请求的,我们学爬虫,就需要学aiohttp 提供的客户端操作功能。 言归正传, 在这个get 方法中, 使用 async 关键字来声明一个异步上下文管理器<with ... as ...>, 然后返回所得到的响应,

而在test 异步函数中, 创建了一个ClientSession 对象, 然后调用get 函数,将session对象和url传递进去, 最后调用asyncio.run 启动协程任务。

请求:

GET:

对于一些有关于Get 请求携带参数的情况,我们可以使用 params 形参来完成

async def test():params = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/get"async with aiohttp.ClientSession() as session:# 使用params 形参传递get 请求数据async with session.get(url=url, params=params) as response:print(await response.text())if __name__ == '__main__':asyncio.run(test())

aiohttp 也提供了 POST, PUT, DELETE, HEAD, PATCH, OPTIONS 等请求方式。

POST:

而对于post 请求表单提交的数据, 例如Content-Type 为: application/X-www-form-urlencoded 的数据, 我们可以使用 data 形参来完成, 楼主看了一下源码,如果post 传递的数据为 json, 楼主斗胆猜一下,应该为json 形参,我们可以看一下源码:

由此可见,它的使用方式几乎和 requests 同步请求库一模一样

async def test():data = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/post"async with aiohttp.ClientSession() as session:# 使用 data 形参 传递 表单提交的数据async with session.post(url=url, data=data) as response:print(await response.text())if __name__ == '__main__':asyncio.run(test())

响应:

 对于响应结果,我们可以调用一下方法来获取其中的:状态码,响应头,响应体,响应体二进制内容,响应体JSON数据。

async def test():data = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/post"async with aiohttp.ClientSession() as session:async with session.post(url, data=data) as response:print(response.status) # 响应状态码print(response.headers) # 响应头print(await response.text()) # 获取响应体print(await response.read()) # 获取二进制数据print(await response.json()) # 获取相响应的JSON数据if __name__ == '__main__':asyncio.run(test())

超时设置:

我们可以借助aiohttp 提供的 ClientTimeout 对象来实现超时, 如果超时还未请求到数据,则抛异常

async def test():data = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/post"timeout = aiohttp.ClientTimeout(total=1) # 设置超时时间,单位为 秒async with aiohttp.ClientSession(timeout=timeout) as session:async with session.post(url, data=data) as response:passif __name__ == '__main__':asyncio.run(test())

ClientTimeout 对象同样还提供了其它参数, 例如:connect, socket_connect 等等, 详细参考官方文档:

https://docs.aiohttp.org.en.stable/client_quickstart.html#timeouts

并发限制:

由于异步爬虫拥有非常非常高的并发量, 如几万,几十万,甚至上百万都有可能, 但是如此高的并发量,目标服务器很可能无法再短时间内响应,而且有瞬间将目标服务器爬挂掉的危险, 所以,我们需要控制一下爬取的并发量。

我们可以借助asyncio 的 Semaphore 来控制并发量:


# 最高并发 5 个
CONCURRENCY = 5url = "http://www.baidu.com"# 创建信号量对象 并将最大并发量常量传递进来
semaphores = asyncio.Semaphore(CONCURRENCY)session = Noneasync def test():# 使用信号量对象创建异步上下文即可控制最高并发量async with semaphores:print("爬取ing: ", url)async with session.get(url) as response:await asyncio.sleep(1)return await response.text()async def main():global sessionsession = aiohttp.ClientSession()test_tasks = [test() for i in range(1000)]await asyncio.gather(*test_tasks)if __name__ == '__main__':asyncio.run(main())

完了.... aiohttp 官方网站: https://docs.aiohttp.org/

这篇关于异步爬虫:aiohttp 异步请求库使用:的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073509

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念