【OpenCV】SIFT原理与源码

2024-06-18 22:48
文章标签 源码 opencv 原理 sift

本文主要是介绍【OpenCV】SIFT原理与源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SIFT简介

Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(《Object Recognition from Local Scale-Invariant Features》)提出的高效区域检测算法,在2004年(《Distinctive Image Features from Scale-Invariant Keypoints》)得以完善。

SIFT特征对旋转、尺度缩放、亮度变化等保持不变性,是非常稳定的局部特征,现在应用很广泛。而SIFT算法是将Blob检测,特征矢量生成,特征匹配搜索等步骤结合在一起优化。我会更新一系列文章,分析SIFT算法原理及OpenCV 2.4.2实现的SIFT源码:

  1. DoG尺度空间构造(Scale-space extrema detection
  2. 关键点搜索与定位(Keypoint localization
  3. 方向赋值(Orientation assignment
  4. 关键点描述(Keypoint descriptor
  5. OpenCV实现:特征检测器FeatureDetector
  6. SIFT中LoG和DoG的比较
OpenCV2.3之后实现了SIFT的代码,2.4改掉了一些bug。本系列文章主要分析OpenCV 2.4.2SIFT函数源码。
SIFT位于OpenCV nonfree的模块, David G. Lowe申请了算法的版权,请尊重作者权力,务必在允许范围内使用。

SIFT in OpenCV

OpenCV中的SIFT函数主要有两个接口。

构造函数:

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. SIFT::SIFT(int nfeatures=0, int nOctaveLayers=3, double contrastThreshold=0.04, double edgeThreshold=  
  2. 10, double sigma=1.6)  
nfeatures:特征点数目(算法对检测出的特征点排名,返回最好的nfeatures个特征点)。
nOctaveLayers:金字塔中每组的层数(算法中会自己计算这个值,后面会介绍)。
contrastThreshold:过滤掉较差的特征点的对阈值。contrastThreshold越大,返回的特征点越少。
edgeThreshold:过滤掉边缘效应的阈值。edgeThreshold越大,特征点越多(被多滤掉的越少)。
sigma:金字塔第0层图像高斯滤波系数,也就是σ。

重载操作符:

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. void SIFT::operator()(InputArray img, InputArray mask, vector<KeyPoint>& keypoints, OutputArray  
  2. descriptors, bool useProvidedKeypoints=false)  

img:8bit灰度图像
mask:图像检测区域(可选)
keypoints:特征向量矩阵
descipotors:特征点描述的输出向量(如果不需要输出,需要传cv::noArray())。
useProvidedKeypoints:是否进行特征点检测。ture,则检测特征点;false,只计算图像特征描述。

函数源码

构造函数SIFT()主要用来初始化参数,并没有特定的操作:
[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. SIFT::SIFT( int _nfeatures, int _nOctaveLayers,  
  2.            double _contrastThreshold, double _edgeThreshold, double _sigma )  
  3.     : nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),  
  4.     contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma)  
  5.     // sigma:对第0层进行高斯模糊的尺度空间因子。  
  6.     // 默认为1.6(如果是软镜摄像头捕获的图像,可以适当减小此值)  
  7. {  
  8. }  

主要操作还是利用重载操作符()来执行:
[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. void SIFT::operator()(InputArray _image, InputArray _mask,  
  2.                       vector<KeyPoint>& keypoints,  
  3.                       OutputArray _descriptors,  
  4.                       bool useProvidedKeypoints) const  
  5. // mask :Optional input mask that marks the regions where we should detect features.  
  6. // Boolean flag. If it is true, the keypoint detector is not run. Instead,  
  7. // the provided vector of keypoints is used and the algorithm just computes their descriptors.  
  8. // descriptors – The output matrix of descriptors.  
  9. // Pass cv::noArray() if you do not need them.              
  10. {  
  11.     Mat image = _image.getMat(), mask = _mask.getMat();  
  12.   
  13.     if( image.empty() || image.depth() != CV_8U )  
  14.         CV_Error( CV_StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" );  
  15.   
  16.     if( !mask.empty() && mask.type() != CV_8UC1 )  
  17.         CV_Error( CV_StsBadArg, "mask has incorrect type (!=CV_8UC1)" );  
  18.   
  19.           
  20.     // 得到第1组(Octave)图像  
  21.     Mat base = createInitialImage(image, false, (float)sigma);  
  22.     vector<Mat> gpyr, dogpyr;  
  23.     // 每层金字塔图像的组数(Octave)  
  24.     int nOctaves = cvRound(log( (double)std::min( base.cols, base.rows ) ) / log(2.) - 2);  
  25.   
  26.     // double t, tf = getTickFrequency();  
  27.     // t = (double)getTickCount();  
  28.       
  29.     // 构建金字塔(金字塔层数和组数相等)  
  30.     buildGaussianPyramid(base, gpyr, nOctaves);  
  31.     // 构建高斯差分金字塔  
  32.     buildDoGPyramid(gpyr, dogpyr);  
  33.   
  34.     //t = (double)getTickCount() - t;  
  35.     //printf("pyramid construction time: %g\n", t*1000./tf);  
  36.       
  37.     // useProvidedKeypoints默认为false  
  38.     // 使用keypoints并计算特征点的描述符  
  39.     if( !useProvidedKeypoints )  
  40.     {  
  41.         //t = (double)getTickCount();  
  42.         findScaleSpaceExtrema(gpyr, dogpyr, keypoints);  
  43.         //除去重复特征点  
  44.         KeyPointsFilter::removeDuplicated( keypoints );   
  45.   
  46.         // mask标记检测区域(可选)  
  47.         if( !mask.empty() )  
  48.             KeyPointsFilter::runByPixelsMask( keypoints, mask );  
  49.   
  50.         // retainBest:根据相应保留指定数目的特征点(features2d.hpp)  
  51.         if( nfeatures > 0 )  
  52.             KeyPointsFilter::retainBest(keypoints, nfeatures);  
  53.         //t = (double)getTickCount() - t;  
  54.         //printf("keypoint detection time: %g\n", t*1000./tf);  
  55.     }  
  56.     else  
  57.     {  
  58.         // filter keypoints by mask  
  59.         // KeyPointsFilter::runByPixelsMask( keypoints, mask );  
  60.     }  
  61.   
  62.     // 特征点输出数组  
  63.     if( _descriptors.needed() )  
  64.     {  
  65.         //t = (double)getTickCount();  
  66.         int dsize = descriptorSize();  
  67.         _descriptors.create((int)keypoints.size(), dsize, CV_32F);  
  68.         Mat descriptors = _descriptors.getMat();  
  69.   
  70.         calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers);  
  71.         //t = (double)getTickCount() - t;  
  72.         //printf("descriptor extraction time: %g\n", t*1000./tf);  
  73.     }  
  74. }  

函数中用到的构造金字塔: buildGaussianPyramid(base, gpyr, nOctaves);等步骤请参见文章后续系列。



这篇关于【OpenCV】SIFT原理与源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073274

相关文章

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意