深度学习之BCE损失介绍

2024-06-18 22:20
文章标签 bce 深度 损失 学习 介绍

本文主要是介绍深度学习之BCE损失介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在深度学习中,BCE (Binary Cross-Entropy) 损失是一种常用的损失函数,主要应用于二分类问题,通过优化该损失来训练模型,使预测概率尽可能接近真实标签。

1. BCE 损失的定义

        对于一个样本 x,其真实标签为 y(0 或 1),模型输出的预测概率为 p,则 BCE 损失计算公式为:

BCE = -y * log(p) - (1 - y) * log(1 - p)

其中:

        y 是样本的真实标签,取值为 0 或 1。

        p 是模型输出的预测概率,取值在 0 到 1 之间。

2. BCE 损失有以下特点:

        分类问题: BCE 损失主要用于二分类问题,其中标签只有 0 和 1 两种可能。

        概率输出: 模型输出的预测值 p 是一个概率值,表示样本属于正类的概率。

        最小化目标: 训练模型时,通过最小化 BCE 损失来优化模型参数,使预测概率 p 尽可能接近真实标签 y。

        负对数似然: BCE 损失实际上是一种负对数似然损失函数,它鼓励模型输出接近真实标签的概率值。

        数值稳定性: 当预测概率 p 接近 0 或 1 时,BCE 损失可能会产生数值稳定性问题。因此,在实现时需要注意数值稳定性。

        BCE 损失在许多深度学习应用中都有使用,如图像分类、文本分类、医疗诊断等。它简单易用,计算高效,且有良好的数学解释。但是对于多分类问题,通常会使用交叉熵损失函数。

3. 使用注意事项

        在实际应用中使用 BCE (Binary Cross-Entropy) 损失函数时,需要注意以下几个方面:

3.1数值稳定性:

        当预测概率 p 接近 0 或 1 时,BCE 损失可能会产生数值溢出或underflow的问题。

        可以使用数值稳定的公式,如 BCE = -y * log(max(p, 1e-7)) - (1 - y) * log(max(1 - p, 1e-7))。

        也可以使用 log1p 函数来避免直接计算 log(1 - p)。

3.2 样本不平衡:

        如果正负样本比例相差很大,模型可能会倾向于预测更多的负样本。

        可以使用类别权重来平衡损失,或者采用上采样/下采样等技术来调整样本分布。

3.3 标签平滑:

        使用纯 0/1 标签可能会导致过拟合。

        可以使用标签平滑技术,将标签值从 0/1 改为 ε/1-ε,以提高泛化能力。

3.4 阈值调整:

        在二分类问题中,通常需要选择一个决策阈值来将连续的预测概率转换为离散的类别标签。

        可以根据业务需求,选择最适合的决策阈值,而不是默认的 0.5 阈值。

3.5 正则化:

        为了防止过拟合,可以在 BCE 损失函数中加入正则化项,如 L1/L2 正则化。

        正则化可以帮助模型学习到更加泛化的特征表示。

3.6 监控与调试:

        除了 BCE 损失,还应该监控其他指标,如准确率、精确率、召回率、F1 score等。

        可视化模型预测概率分布、混淆矩阵等,有助于发现问题并调整模型。

        在实际应用中使用 BCE 损失时,需要注意数值稳定性、样本不平衡、标签平滑、阈值调整、正则化以及监控与调试等方面,以确保模型的性能和泛化能力。这些技巧可以帮助我们构建更加健壮和可靠的二分类模型。

附:log1p补充

        log1p() 函数是一个非常有用的数学函数,它可以帮助我们避免在计算过程中出现数值稳定性问题。

        log1p(x) 函数的定义是:

log1p(x) = log(1 + x)

        其中 x 是一个数值。

这个函数有几个重要的特点:

        数值稳定性: 当 x 接近 0 时, log(1 + x) 可能会产生数值溢出或下溢的问题。而 log1p(x) 可以避免这种情况,从而提高计算的数值稳定性。

        逼近精度: 对于小值的 x, log1p(x) 的计算结果比直接计算 log(1 + x) 更加精确。这是因为 log1p(x) 使用了更精确的数值逼近方法。

        泰勒展开: log1p(x) 可以看作是 log(1 + x) 的泰勒展开式的第一项,这在某些数值计算中非常有用。

        在深度学习中,log1p() 函数经常用于计算 BCE (Binary Cross-Entropy) 损失函数,以避免数值稳定性问题。具体的用法如下:

import numpy as np# 原始的 BCE 损失计算
p = 0.01  # 预测概率
y = 1     # 真实标签
bce = -y * np.log(p) - (1 - y) * np.log(1 - p)# 使用 log1p 计算 BCE 损失
bce_stable = -y * np.log1p(-p) - (1 - y) * np.log1p(p)

        在上面的例子中,当预测概率 p 接近 0 时,直接计算 np.log(1 - p) 可能会产生数值稳定性问题。而使用 np.log1p(-p) 可以避免这个问题,从而得到更加稳定和可靠的 BCE 损失计算结果。

         log1p() 函数是一个非常有用的数学函数,在深度学习等领域中广泛应用,可以帮助我们解决数值稳定性问题,提高计算的精度和可靠性。

这篇关于深度学习之BCE损失介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073219

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

揭秘未来艺术:AI绘画工具全面介绍

📑前言 随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面。在艺术创作领域,AI技术同样展现出了其独特的魅力。今天,我们就来一起探索这个神秘而引人入胜的领域,深入了解AI绘画工具的奥秘及其为艺术创作带来的革命性变革。 一、AI绘画工具的崛起 1.1 颠覆传统绘画模式 在过去,绘画是艺术家们通过手中的画笔,蘸取颜料,在画布上自由挥洒的创造性过程。然而,随着AI绘画工

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

20.Spring5注解介绍

1.配置组件 Configure Components 注解名称说明@Configuration把一个类作为一个loC容 器 ,它的某个方法头上如果注册7@Bean , 就会作为这个Spring容器中的Bean@ComponentScan在配置类上添加@ComponentScan注解。该注解默认会扫描该类所在的包下所有的配置类,相当于之前的 <context:component-scan>@Sc

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘