fastsam-pytorch基于YOLACT方法的实例分割分支的目标检测器模型

本文主要是介绍fastsam-pytorch基于YOLACT方法的实例分割分支的目标检测器模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FastSAM

论文

Fast Segment Anything

模型结构

以yolov8-seg的instance segmentation为基础,检测时集成instance segmentation分支,主要分为两步全实例分割(all instance Segmentation)和基于prompt的mask输出(Prompt-guided Selection),仅使用了2%的SA-1B数据集便得到了差不多的精度但快几十倍的速度。

算法原理

该算法采用yolov8-seg的instance segmentation为基础,检测时集成instance segmentation分支实现。

环境配置

Docker (方法一)

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.13.1-centos7.6-dtk23.10-py38
# <your IMAGE ID>为以上拉取的docker的镜像ID替换
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal:/opt/hyhal --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
cd /path/workspace/
pip3 install -r requirements.txt
pip3 install git+https://github.com/openai/CLIP.git

Dockerfile (方法二)

cd ./docker
docker build --no-cache -t fastsam_pytorch:last .
# <your IMAGE ID>为以上拉取的docker的镜像ID替换
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal:/opt/hyhal --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash

Anaconda (方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

DTK软件栈:dtk23.10
python:python3.8
pytorch:1.13.1
torchvision:0.14.1

Tips:以上dtk软件栈、python、pytorch等DCU相关工具版本需要严格一一对应

2、其他非特殊库直接按照requirements.txt安装

pip3 install -r requirements.txt
pip3 install git+https://github.com/openai/CLIP.git

数据集

训练数据集为SA-1B的2%左右的数据量,由于数据量过大,且官方并未放出2%的具体数据集,以下数据集为SA-1B原始数据集,训练仅供参考。

训练数据

推理

单卡推理

权重下载地址

HIP_VISIBLE_DEVICES=1 python Inference.py --model_path ./weights/FastSAM_X.pt --img_path ./images/dogs.jpg

result

此处以Fast-SAM-x模型进行推理测试

输入输出

精度

Instance Segmentation On COCO 2017
methodAPAPSAPMAPL
ViTDet-H.510.320.543.689
SAM.465.308.510.617
FastSAM.379.239.434.500

应用场景

算法分类

图像分割

热点应用行业

制造,广媒,能源,医疗,家居,教育

源码仓库及问题反馈

ModelZoo / FastSAM_pytorch · GitLab

参考资料

FastSAM基于YOLACT方法的实例分割分支的目标检测器YOLOv8-seg,通过仅在SA-1B数据集的2%(1/50)上直接训练该CNN检测器,它实现了与SAM相当的性能。

这篇关于fastsam-pytorch基于YOLACT方法的实例分割分支的目标检测器模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072974

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你