聚类分析 #数据挖掘 #Python

2024-06-18 18:36

本文主要是介绍聚类分析 #数据挖掘 #Python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

聚类分析(Cluster Analysis)是一种无监督机器学习方法,主要用于数据挖掘和数据分析中,它的目标是将一组对象或观测值根据它们之间的相似性或相关性自动分组,形成不同的簇或类别。聚类分析并不预先知道每个观测值的具体标签,而是基于数据本身的内在结构进行分组。

聚类过程主要包括以下几个步骤:

  1. 选择算法:常见的聚类算法有K-means、层次聚类(如凝聚层次聚类和分裂层次聚类)、DBSCAN、谱聚类等。
  2. 初始化:确定初始聚类中心或簇的数量。
  3. 迭代:根据所选算法,计算每个观测值与当前簇中心的距离,将其分配到最接近的簇;然后更新簇的中心点。
  4. 评估:根据簇内的相似性和簇间的差异性(如轮廓系数、Calinski-Harabasz指数等)评估聚类效果。
  5. 停止条件:当满足预定的停止标准(如达到预设的迭代次数或聚类不再变化)时,结束聚类过程。

在Python中,有许多库支持聚类分析,其中最常用的是scikit-learn

scikit-learn中的主要模块cluster提供了多种聚类算法,如:

  1. K-Means:这是一种基于距离的聚类算法,通过迭代将数据点分配到最近的质心形成的簇中。
  2. 层次聚类(Hierarchical Clustering):包括凝聚式(自下而上合并)和分裂式(自上而下分裂)两种方法,如单链接、全连接、平均链接和 ward 方法。
  3. DBSCAN:密度聚类算法,能识别任意形状的簇,并对噪声有很好的处理能力。
  4. 谱聚类(Spectral Clustering):利用数据的特征图(如拉普拉斯矩阵)进行聚类,适用于非凸形状的簇和高维数据。
  5. GMM(高斯混合模型):一种概率模型,常用于生成模型和混合分布的聚类。

这里我们主要运用K-Means:

K均值聚类是一种常用的无监督机器学习算法,用于数据分群。它的目标是将一组对象(通常称为数据点)划分为K个互不重叠的类别,每个类别由一个中心点(聚类中心)代表,目的是最小化所有数据点与其所属聚类中心的距离之和,通常采用欧几里得距离作为度量。

下面是K均值聚类的主要步骤:

  1. 选择K值:确定要创建的聚类数量K。
  2. 初始化聚类中心:随机从数据集中选择K个点作为初始聚类中心。
  3. 分配数据点:每个数据点被分配到最近的聚类中心。
  4. 更新聚类中心:根据当前分配的数据点计算每个聚类的新中心。
  5. 迭代过程:重复步骤3和4,直到聚类中心不再改变,或达到预设的最大迭代次数。


1、读取NBA球员数据:players.csv。

# 读取球员数据
import pandas as pd
players = pd.read_csv('players.csv')
players.head()

查看数据形式:

 

2、提取得分、命中率、三分命中率和罚球命中率4个指标作为球员聚类的依据,并对指标数据进行标准化。


# 数据标准化处理
from sklearn import preprocessing
X = preprocessing.minmax_scale(players[['得分','罚球命中率','命中率','三分命中率']])
# 将数组转换为数据框
X = pd.DataFrame(X, columns=['得分','罚球命中率','命中率','三分命中率'])# 绘制得分与命中率的散点图
import seaborn as sns
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']    #指定默认字体
plt.rcParams['axes.unicode_minus'] = False      #用来正常显示负号sns.lmplot(x = '得分', y = '命中率', data = players, fit_reg = False, scatter_kws = {'alpha':0.8, 'color': 'steelblue'})
plt.show()

 

3、绘制簇内离差平方和与K的关系图,使用拐点法确定合适的K值(参考:K可以取3、4、5之一)。


import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
#构造自定义函数————用于绘制不同k值和对应总的簇类离差平方和的折线图
def k_SSE(X,clusters):K = range(1,clusters+1)    #选择连续的k种不同的值TSSE = []    #构建空列表用于存储总的簇内离差平方和for k in K:SSE = []        #用于存储各个簇内离差平方和kmeans = KMeans(n_clusters=k)kmeans.fit(X)labels = kmeans.labels_        #返回簇标签centers = kmeans.cluster_centers_        #返回簇中心#计算各簇样本的离差平方和,并保存到列表中for label in set(labels):SSE.append(np.sum((X.loc[labels == label,]-centers[label,:])**2))TSSE.append(np.sum(SSE))        #计算总的簇内离差平方和#中文和负号的正常显示plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']plt.rcParams['axes.unicode_minus'] = False#设置绘图风格plt.style.use('ggplot')# 绘制 K 的个数与 GSSE 的关系plt.plot(K, TSSE, 'b*-')plt.xlabel('簇的个数')plt.ylabel('簇内离差平方和之和')# 显示图形plt.show()# 使用拐点法选择最佳的 K 值
k_SSE(X, 15)

 

4、取合适的K值,使用得分与命中率两个指标绘制聚类效果图。


# 将球员数据集聚为 3 类
kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)
# 将聚类结果标签插入到数据集 players 中
players['cluster'] = kmeans.labels_
# 构建空列表,用于存储三个簇的簇中心
centers = []
for i in players.cluster.unique():centers.append(players.loc[players.cluster == i,['得分','罚球命中率','命中率','三分命中率']].mean())
# 将列表转换为数组,便于后面的索引取数
centers = np.array(centers)
# 绘制散点图
sns.lmplot(x = '得分', y = '命中率', hue = 'cluster',data = players,markers = ['^','s','o'],fit_reg = False,scatter_kws = {'alpha':0.8},legend = False)
# 添加簇中心
plt.scatter(centers[:,0], centers[:,2], c='k', marker = '*', s = 180)
plt.xlabel('得分')
plt.ylabel('命中率')
# 图形显示
plt.show()

 

5、绘制雷达图。

(提示:雷达图要在操作系统下打开)


# 雷达图
import pygal
# 调用模型计算出来的簇中心
centers_std = kmeans.cluster_centers_
# 设置填充型雷达图
radar_chart = pygal.Radar(fill = True)
# 添加雷达图各顶点的名称
radar_chart.x_labels = ['得分','罚球命中率','命中率','三分命中率']# 绘制雷达图代表三个簇中心的指标值
radar_chart.add('C1', centers_std[0])
radar_chart.add('C2', centers_std[1])
radar_chart.add('C3', centers_std[2])
# 保存图像
radar_chart.render_to_file('radar_chart.svg')

这篇关于聚类分析 #数据挖掘 #Python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072782

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一