高频考题-LRU缓存机制

2024-06-18 13:04
文章标签 缓存 机制 lru 高频 考题

本文主要是介绍高频考题-LRU缓存机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

146. LRU 缓存

LRU 缓存机制可以通过哈希表辅以双向链表实现,维护所有在缓存中的键值对。

双向链表按照读取的顺序存储键值对,靠近头部的键值对是最近使用的,尾部的键值对是最久未使用的。

哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。

这样以来,我们首先使用哈希表进行定位,找出缓存项在双向链表中的位置,随后将其移动到双向链表的头部,即可在 O(1)的时间内完成 get 或者 put 操作。具体的方法如下:

对于 get 操作,首先判断 key 是否存在:

  • 如果 key 不存在,则返回 −1;
  • 如果 key 存在,则 key 对应的节点是最近被使用的节点。通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的头部,最后返回该节点的值。

对于 put 操作,首先判断 key 是否存在:

  • 如果 key 不存在,使用 key 和 value 创建一个新的节点,在双向链表的头部添加该节点,并将 key 和该节点添加进哈希表中。然后判断双向链表的节点数是否超出容量,如果超出容量,则删除双向链表的尾部节点,并删除哈希表中对应的项;
  • 如果 key 存在,则与 get 操作类似,先通过哈希表定位,再将对应的节点的值更新为 value,并将该节点移到双向链表的头部。
class LRUCache {private static class Node{int key, value;Node pre, next;Node(int k, int v){key = k;value = v;}}private final int capacity;private final Map<Integer, Node> keyToNode= new HashMap<>();private final Node dummy = new Node(0,0);public LRUCache(int capacity) {this.capacity = capacity;dummy.pre = dummy;dummy.next = dummy;}public int get(int key) {Node node = getNode(key);return node != null ? node.value : -1;}public void put(int key, int value) {Node node = getNode(key);if(node != null){node.value = value;return;}node = new Node(key,value);keyToNode.put(key,node);pushFront(node);if(keyToNode.size() > capacity){Node backNode = dummy.pre;keyToNode.remove(backNode.key);remove(backNode);}}// 哈希表获取key对应的Nodeprivate Node getNode(int key){if(!keyToNode.containsKey(key)){return null;}Node node = keyToNode.get(key);remove(node);pushFront(node);return node;}// 移除最后一个Nodeprivate void remove(Node x){x.pre.next = x.next;x.next.pre = x.pre;}// 将Node放到链表头部(借助哑元结点)private void pushFront(Node x){x.pre = dummy;x.next = dummy.next;x.pre.next = x;x.next.pre=x;}
}/*** Your LRUCache object will be instantiated and called as such:* LRUCache obj = new LRUCache(capacity);* int param_1 = obj.get(key);* obj.put(key,value);*/

PS:

1.需要几个哨兵节点?

一个就够了。一开始哨兵节点 dummy的 prev 和 next都指向 dummy。随着节点的插入,dummy 的 next指向链表的第一个节点,prev指向链表的最后一个节点。

2.为什么用双向链表而不是单向链表?

将某个节点移动到链表头部或者将链表尾部节点删去,都要用到删除链表中某个节点这个操作。删除操作需要找到该节点的前驱节点和后继节点。对于寻找后继节点,单向链表和双向链表都能通过 next 指针在O(1)时间内完成;对于寻找前驱节点,单向链表需要从头开始找,也就是要O(n)时间,双向链表可以通过前向指针直接找到,需要O(1)时间。综上,要想在O(1)时间内完成该操作,当然需要双向链表,实际上就是用双向链表空间换时间了。

3.为什么链表节点需要同时存储 key 和 value,而不是仅仅只存储 value?

在删除链表末尾节点时,也要删除哈希表中的记录,这需要知道末尾节点的 key\textit{key}key。

这篇关于高频考题-LRU缓存机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072072

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-