CV预测:快速使用DenseNet神经网络

2024-06-18 08:52

本文主要是介绍CV预测:快速使用DenseNet神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI预测相关目录

AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验

  1. EEMD策略及踩坑
  2. VMD-CNN-LSTM时序预测
  3. 对双向LSTM等模型添加自注意力机制
  4. K折叠交叉验证
  5. optuna超参数优化框架
  6. 多任务学习-模型融合策略
  7. Transformer模型及Paddle实现
  8. 迁移学习在预测任务上的tensoflow2.0实现
  9. holt提取时序序列特征
  10. TCN时序预测及tf实现
  11. 注意力机制/多头注意力机制及其tensorflow实现
  12. 一文解析AI预测数据工程
  13. FITS:一个轻量级而又功能强大的时间序列分析模型
  14. DLinear:未来预测聚合历史信息的最简单网络
  15. LightGBM:更好更快地用于工业实践集成学习算法
  16. 面向多特征的AI预测指南
  17. 大模型时序预测初步调研【20240506】
  18. Time-LLM :超越了现有时间序列预测模型的学习器
  19. CV预测:快速使用LeNet-5卷积神经网络
  20. CV预测:快速使用ResNet深度残差神经网络并创建自己的训练集
  21. CV预测:快速使用DenseNet神经网络

文章目录

  • AI预测相关目录
  • DenseNet简介
  • 代码


DenseNet简介

DenseNet在ResNet基础上做出了改进,其主要优势点如下:

  • 1.提出了稠密连接的思想。将一个稠密块中的所有层直接相互连接,确保了网络中各层之间最大的信息流。同时减轻了梯度弥散的问题,增强了特征传播,鼓励了特征重用。
  • 2.采用了过渡层进行下采样。这一点和ResNet有明显的区别。
  • 3.提出了增长率k,指的是每个瓶颈层H,产生的特征图个数。相对较小的增长率(比如K=12)就足以在测试的数据集上获得最先进的结果。
  • 4.每个稠密块之后,使用压缩因子0对特征图通道数进行压缩。

在这里插入图片描述
基本设计如上图所示:
传统的卷积神经网络:将第1- 1层的输出作为第1层的输入,用公式可表示为: x= H(x1-1)
深度残差网络ResNet:ResNets添加了一个捷径连接,该连接使用恒等映射绕过了非线性变换H用公式可表示为:x= H(x-1)+ x1-1
稠密卷积网络DenseNet:为了进一步改善各层之间的信息流,提出了一种不同的连接模式–稠密连接:引入了从任何层到所有后续层的直接连接。该网络以前馈方式将每一层连接到其他每一层。对于每一层,所有先前层的特征图都用作输入,而其自身的特征图则用作所有后续层的输入。这种连接方式确保了网络中各层之间最大的信息流。

稠密连接的优点:
1.减轻了梯度弥散,增强了特征传播,鼓励了特征重用
2.在整个网络中改善了信息流和梯度,使得模型更易于训练
3.稠密连接具有正则化效果,减少了训练集较小任务的过度拟合

代码

MODEL

import tensorflow as tf
from tensorflow.keras import layers# 瓶颈层,相当于每一个稠密块中若干个相同的H函数
class BottleNeck(layers.Layer):# growth_rate对应的是论文中的增长率k,指经过一个BottleNet输出的特征图的通道数;drop_rate指失活率。def __init__(self, growth_rate, drop_rate):super(BottleNeck, self).__init__()self.bn1 = layers.BatchNormalization()self.conv1 = layers.Conv2D(filters=4 * growth_rate,  # 使用1*1卷积核将通道数降维到4*kkernel_size=(1, 1),strides=1,padding="same")self.bn2 = layers.BatchNormalization()self.conv2 = layers.Conv2D(filters=growth_rate,  # 使用3*3卷积核,使得输出维度(通道数)为kkernel_size=(3, 3),strides=1,padding="same")self.dropout = layers.Dropout(rate=drop_rate)# 将网络层存入一个列表中self.listLayers = [self.bn1,layers.Activation("relu"),self.conv1,self.bn2,layers.Activation("relu"),self.conv2,self.dropout]def call(self, x):y = xfor layer in self.listLayers.layers:y = layer(y)# 每经过一个BottleNet,将输入和输出按通道连结。作用是:将前l层的输入连结起来,作为下一个BottleNet的输入。y = layers.concatenate([x, y], axis=-1)return y# 稠密块,由若干个相同的瓶颈层构成
class DenseBlock(layers.Layer):# num_layers表示该稠密块存在BottleNet的个数,也就是一个稠密块的层数Ldef __init__(self, num_layers, growth_rate, drop_rate=0.5):super(DenseBlock, self).__init__()self.num_layers = num_layersself.growth_rate = growth_rateself.drop_rate = drop_rateself.listLayers = []# 一个DenseBlock由多个相同的BottleNeck构成,我们将它们放入一个列表中。for _ in range(num_layers):self.listLayers.append(BottleNeck(growth_rate=self.growth_rate, drop_rate=self.drop_rate))def call(self, x):for layer in self.listLayers.layers:x = layer(x)return x# 过渡层
class TransitionLayer(layers.Layer):# out_channels代表输出通道数def __init__(self, out_channels):super(TransitionLayer, self).__init__()self.bn = layers.BatchNormalization()self.conv = layers.Conv2D(filters=out_channels,kernel_size=(1, 1),strides=1,padding="same")self.pool = layers.MaxPool2D(pool_size=(2, 2),   # 2倍下采样strides=2,padding="same")def call(self, inputs):x = self.bn(inputs)x = tf.keras.activations.relu(x)x = self.conv(x)x = self.pool(x)return x# DenseNet整体网络结构
class DenseNet(tf.keras.Model):# num_init_features:代表初始的通道数,即输入稠密块时的通道数# growth_rate:对应的是论文中的增长率k,指经过一个BottleNet输出的特征图的通道数# block_layers:每个稠密块中的BottleNet的个数# compression_rate:压缩因子,其值在(0,1]范围内# drop_rate:失活率def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate):super(DenseNet, self).__init__()# 第一层,7*7的卷积层,2倍下采样。self.conv = layers.Conv2D(filters=num_init_features,kernel_size=(7, 7),strides=2,padding="same")self.bn = layers.BatchNormalization()# 最大池化层,3*3卷积核,2倍下采样self.pool = layers.MaxPool2D(pool_size=(3, 3), strides=2, padding="same")# 稠密块 Dense Block(1)self.num_channels = num_init_featuresself.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate)# 该稠密块总的输出的通道数self.num_channels += growth_rate * block_layers[0]# 对特征图的通道数进行压缩self.num_channels = compression_rate * self.num_channels# 过渡层1,过渡层进行下采样self.transition_1 = TransitionLayer(out_channels=int(self.num_channels))# 稠密块 Dense Block(2)self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate)self.num_channels += growth_rate * block_layers[1]self.num_channels = compression_rate * self.num_channels# 过渡层2,2倍下采样,输出:14*14self.transition_2 = TransitionLayer(out_channels=int(self.num_channels))# 稠密块 Dense Block(3)self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate)self.num_channels += growth_rate * block_layers[2]self.num_channels = compression_rate * self.num_channels# 过渡层3,2倍下采样self.transition_3 = TransitionLayer(out_channels=int(self.num_channels))# 稠密块 Dense Block(4)self.dense_block_4 = DenseBlock(num_layers=block_layers[3], growth_rate=growth_rate, drop_rate=drop_rate)# 全局平均池化,输出size:1*1self.avgpool = layers.GlobalAveragePooling2D()# 全连接层,进行10分类self.fc = layers.Dense(units=10, activation=tf.keras.activations.softmax)def call(self, inputs):x = self.conv(inputs)x = self.bn(x)x = tf.keras.activations.relu(x)x = self.pool(x)x = self.dense_block_1(x)x = self.transition_1(x)x = self.dense_block_2(x)x = self.transition_2(x)x = self.dense_block_3(x)x = self.transition_3(x,)x = self.dense_block_4(x)x = self.avgpool(x)x = self.fc(x)return xdef densenet():return DenseNet(num_init_features=64, growth_rate=32, block_layers=[2,2,2,2], compression_rate=0.5, drop_rate=0.5)# return DenseNet(num_init_features=64, growth_rate=32, block_layers=[4, 4, 4, 4], compression_rate=0.5, drop_rate=0.5)
mynet=densenet()

TRAIN

import tensorflow as tf
from model import mynet
import matplotlib.pyplot as plt# 数据集准备
# (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
x_train = x_train.reshape((60000, 28, 28, 1)).astype('float32') / 255
x_test = x_test.reshape((10000, 28, 28, 1)).astype('float32') / 255mynet.compile(loss='sparse_categorical_crossentropy',optimizer=tf.keras.optimizers.SGD(),metrics=['accuracy'])history = mynet.fit(x_train, y_train,batch_size=64,epochs=5,validation_split=0.2)
# test_scores = mynet.evaluate(x_test, y_test, verbose=2)plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training', 'validation'], loc='upper left')
plt.show()

这篇关于CV预测:快速使用DenseNet神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071800

相关文章

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected