CV预测:快速使用DenseNet神经网络

2024-06-18 08:52

本文主要是介绍CV预测:快速使用DenseNet神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI预测相关目录

AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验

  1. EEMD策略及踩坑
  2. VMD-CNN-LSTM时序预测
  3. 对双向LSTM等模型添加自注意力机制
  4. K折叠交叉验证
  5. optuna超参数优化框架
  6. 多任务学习-模型融合策略
  7. Transformer模型及Paddle实现
  8. 迁移学习在预测任务上的tensoflow2.0实现
  9. holt提取时序序列特征
  10. TCN时序预测及tf实现
  11. 注意力机制/多头注意力机制及其tensorflow实现
  12. 一文解析AI预测数据工程
  13. FITS:一个轻量级而又功能强大的时间序列分析模型
  14. DLinear:未来预测聚合历史信息的最简单网络
  15. LightGBM:更好更快地用于工业实践集成学习算法
  16. 面向多特征的AI预测指南
  17. 大模型时序预测初步调研【20240506】
  18. Time-LLM :超越了现有时间序列预测模型的学习器
  19. CV预测:快速使用LeNet-5卷积神经网络
  20. CV预测:快速使用ResNet深度残差神经网络并创建自己的训练集
  21. CV预测:快速使用DenseNet神经网络

文章目录

  • AI预测相关目录
  • DenseNet简介
  • 代码


DenseNet简介

DenseNet在ResNet基础上做出了改进,其主要优势点如下:

  • 1.提出了稠密连接的思想。将一个稠密块中的所有层直接相互连接,确保了网络中各层之间最大的信息流。同时减轻了梯度弥散的问题,增强了特征传播,鼓励了特征重用。
  • 2.采用了过渡层进行下采样。这一点和ResNet有明显的区别。
  • 3.提出了增长率k,指的是每个瓶颈层H,产生的特征图个数。相对较小的增长率(比如K=12)就足以在测试的数据集上获得最先进的结果。
  • 4.每个稠密块之后,使用压缩因子0对特征图通道数进行压缩。

在这里插入图片描述
基本设计如上图所示:
传统的卷积神经网络:将第1- 1层的输出作为第1层的输入,用公式可表示为: x= H(x1-1)
深度残差网络ResNet:ResNets添加了一个捷径连接,该连接使用恒等映射绕过了非线性变换H用公式可表示为:x= H(x-1)+ x1-1
稠密卷积网络DenseNet:为了进一步改善各层之间的信息流,提出了一种不同的连接模式–稠密连接:引入了从任何层到所有后续层的直接连接。该网络以前馈方式将每一层连接到其他每一层。对于每一层,所有先前层的特征图都用作输入,而其自身的特征图则用作所有后续层的输入。这种连接方式确保了网络中各层之间最大的信息流。

稠密连接的优点:
1.减轻了梯度弥散,增强了特征传播,鼓励了特征重用
2.在整个网络中改善了信息流和梯度,使得模型更易于训练
3.稠密连接具有正则化效果,减少了训练集较小任务的过度拟合

代码

MODEL

import tensorflow as tf
from tensorflow.keras import layers# 瓶颈层,相当于每一个稠密块中若干个相同的H函数
class BottleNeck(layers.Layer):# growth_rate对应的是论文中的增长率k,指经过一个BottleNet输出的特征图的通道数;drop_rate指失活率。def __init__(self, growth_rate, drop_rate):super(BottleNeck, self).__init__()self.bn1 = layers.BatchNormalization()self.conv1 = layers.Conv2D(filters=4 * growth_rate,  # 使用1*1卷积核将通道数降维到4*kkernel_size=(1, 1),strides=1,padding="same")self.bn2 = layers.BatchNormalization()self.conv2 = layers.Conv2D(filters=growth_rate,  # 使用3*3卷积核,使得输出维度(通道数)为kkernel_size=(3, 3),strides=1,padding="same")self.dropout = layers.Dropout(rate=drop_rate)# 将网络层存入一个列表中self.listLayers = [self.bn1,layers.Activation("relu"),self.conv1,self.bn2,layers.Activation("relu"),self.conv2,self.dropout]def call(self, x):y = xfor layer in self.listLayers.layers:y = layer(y)# 每经过一个BottleNet,将输入和输出按通道连结。作用是:将前l层的输入连结起来,作为下一个BottleNet的输入。y = layers.concatenate([x, y], axis=-1)return y# 稠密块,由若干个相同的瓶颈层构成
class DenseBlock(layers.Layer):# num_layers表示该稠密块存在BottleNet的个数,也就是一个稠密块的层数Ldef __init__(self, num_layers, growth_rate, drop_rate=0.5):super(DenseBlock, self).__init__()self.num_layers = num_layersself.growth_rate = growth_rateself.drop_rate = drop_rateself.listLayers = []# 一个DenseBlock由多个相同的BottleNeck构成,我们将它们放入一个列表中。for _ in range(num_layers):self.listLayers.append(BottleNeck(growth_rate=self.growth_rate, drop_rate=self.drop_rate))def call(self, x):for layer in self.listLayers.layers:x = layer(x)return x# 过渡层
class TransitionLayer(layers.Layer):# out_channels代表输出通道数def __init__(self, out_channels):super(TransitionLayer, self).__init__()self.bn = layers.BatchNormalization()self.conv = layers.Conv2D(filters=out_channels,kernel_size=(1, 1),strides=1,padding="same")self.pool = layers.MaxPool2D(pool_size=(2, 2),   # 2倍下采样strides=2,padding="same")def call(self, inputs):x = self.bn(inputs)x = tf.keras.activations.relu(x)x = self.conv(x)x = self.pool(x)return x# DenseNet整体网络结构
class DenseNet(tf.keras.Model):# num_init_features:代表初始的通道数,即输入稠密块时的通道数# growth_rate:对应的是论文中的增长率k,指经过一个BottleNet输出的特征图的通道数# block_layers:每个稠密块中的BottleNet的个数# compression_rate:压缩因子,其值在(0,1]范围内# drop_rate:失活率def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate):super(DenseNet, self).__init__()# 第一层,7*7的卷积层,2倍下采样。self.conv = layers.Conv2D(filters=num_init_features,kernel_size=(7, 7),strides=2,padding="same")self.bn = layers.BatchNormalization()# 最大池化层,3*3卷积核,2倍下采样self.pool = layers.MaxPool2D(pool_size=(3, 3), strides=2, padding="same")# 稠密块 Dense Block(1)self.num_channels = num_init_featuresself.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate)# 该稠密块总的输出的通道数self.num_channels += growth_rate * block_layers[0]# 对特征图的通道数进行压缩self.num_channels = compression_rate * self.num_channels# 过渡层1,过渡层进行下采样self.transition_1 = TransitionLayer(out_channels=int(self.num_channels))# 稠密块 Dense Block(2)self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate)self.num_channels += growth_rate * block_layers[1]self.num_channels = compression_rate * self.num_channels# 过渡层2,2倍下采样,输出:14*14self.transition_2 = TransitionLayer(out_channels=int(self.num_channels))# 稠密块 Dense Block(3)self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate)self.num_channels += growth_rate * block_layers[2]self.num_channels = compression_rate * self.num_channels# 过渡层3,2倍下采样self.transition_3 = TransitionLayer(out_channels=int(self.num_channels))# 稠密块 Dense Block(4)self.dense_block_4 = DenseBlock(num_layers=block_layers[3], growth_rate=growth_rate, drop_rate=drop_rate)# 全局平均池化,输出size:1*1self.avgpool = layers.GlobalAveragePooling2D()# 全连接层,进行10分类self.fc = layers.Dense(units=10, activation=tf.keras.activations.softmax)def call(self, inputs):x = self.conv(inputs)x = self.bn(x)x = tf.keras.activations.relu(x)x = self.pool(x)x = self.dense_block_1(x)x = self.transition_1(x)x = self.dense_block_2(x)x = self.transition_2(x)x = self.dense_block_3(x)x = self.transition_3(x,)x = self.dense_block_4(x)x = self.avgpool(x)x = self.fc(x)return xdef densenet():return DenseNet(num_init_features=64, growth_rate=32, block_layers=[2,2,2,2], compression_rate=0.5, drop_rate=0.5)# return DenseNet(num_init_features=64, growth_rate=32, block_layers=[4, 4, 4, 4], compression_rate=0.5, drop_rate=0.5)
mynet=densenet()

TRAIN

import tensorflow as tf
from model import mynet
import matplotlib.pyplot as plt# 数据集准备
# (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
x_train = x_train.reshape((60000, 28, 28, 1)).astype('float32') / 255
x_test = x_test.reshape((10000, 28, 28, 1)).astype('float32') / 255mynet.compile(loss='sparse_categorical_crossentropy',optimizer=tf.keras.optimizers.SGD(),metrics=['accuracy'])history = mynet.fit(x_train, y_train,batch_size=64,epochs=5,validation_split=0.2)
# test_scores = mynet.evaluate(x_test, y_test, verbose=2)plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training', 'validation'], loc='upper left')
plt.show()

这篇关于CV预测:快速使用DenseNet神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071800

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的