本文主要是介绍高级优化理论与方法(十五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
高级优化理论与方法(十五)
- Algorithms for Constrained Optimization
- Projection
- Idea
- Example
- Method
- Problem
- Solution
- Orthogonal Projector
- Definition
- Remark
- Lemma
- Theorem
- Projection
- Projected steepest descent
- Properties
- Theorem
- Properties
- Lagrange's Algorithm
- Theorem
- Theorem
- Penalty Function
- Definition
- Example
- Multi-objective Optimization
- Pareto-optimal
- Multi to Single
- 总结
- 课程考察重点
Algorithms for Constrained Optimization
基本思路:沿用无约束优化问题中的迭代方法: x k + 1 = x k + α k d k x^{k+1}=x^k+\alpha^k d^k xk+1=xk+αkdk。但是问题在于如何使得迭代满足约束条件。
Projection
Idea
If x k + α k d k ∈ Ω x^k+\alpha^k d^k\in\Omega xk+αkdk∈Ω, then x k + 1 = x k + α k d k x^{k+1}=x^k+\alpha^k d^k xk+1=xk+αkdk
else $x^{k+1}=“project” on Ω \Omega Ω.
Example
Ω = { x : l i ≤ x i ≤ u i , ∀ i } , l i , u i ∈ Ω \Omega=\{x:l_i\leq x_i\leq u_i,\forall i\},l_i,u_i\in\Omega Ω={x:li≤xi≤ui,∀i},li,ui∈Ω
y i = { u i , x i ≥ u i x i , l i < x i < u i l i , x i ≤ l i y_i=\begin{cases} u_i,x_i\geq u_i\\ x_i,l_i<x_i<u_i\\ l_i,x_i\leq l_i \end{cases} yi=⎩ ⎨ ⎧ui,xi≥uixi,li<xi<uili,xi≤li
Method
“Projection of x x x on Ω \Omega Ω”: π [ x ] : = \pi[x]:= π[x]:= the closest point of Ω \Omega Ω to x x x.
π [ x k + α k d k ] = a r g m i n z ∈ Ω ∣ ∣ z − ( x k + α k d k ) ∣ ∣ \pi[x^k+\alpha^k d^k]=argmin_{z\in\Omega}||z-(x^k+\alpha^k d^k)|| π[xk+αkdk]=argminz∈Ω∣∣z−(xk+αkdk)∣∣
Project gradient method: x k + 1 = π [ x k − α k ∇ f ( x k ) ] x^{k+1}=\pi[x^k-\alpha^k \nabla f(x^k)] xk+1=π[xk−αk∇f(xk)], where α k = a r g m i n α ≥ 0 f ( x k − α ∇ f ( x k ) ) \alpha^k=argmin_{\alpha\geq 0} f(x^k-\alpha \nabla f(x^k)) αk=argminα≥0f(xk−α∇f(xk))
Problem
min ∣ ∣ z − ( x k + α k d k ) ∣ ∣ ||z-(x^k+\alpha^k d^k)|| ∣∣z−(xk+αkdk)∣∣ s.t. z ∈ Ω z\in\Omega z∈Ω is difficult to solve.
Solution
Orthogonal Projector
min f ( x ) f(x) f(x)
s.t. A x = b Ax=b Ax=b
A ∈ R m × n , m ≤ n , r a n k A = m A\in \mathbb{R}^{m\times n},m\leq n,rank A=m A∈Rm×n,m≤n,rankA=m
Definition
Def: Orthogonal Projector: P = I n − A T ( A A T ) − 1 A P=I_n-A^T(AA^T)^{-1}A P=In−AT(AAT)−1A
Remark
P = P T , P 2 = P × P = P P=P^T,P^2=P\times P=P P=PT,P2=P×P=P
Lemma
v ∈ R n v\in \mathbb{R}^n v∈Rn. Then, P v = 0 ⇔ v ∈ { x : x = A T y } P_v=0\Leftrightarrow v\in\{x:x=A^Ty\} Pv=0⇔v∈{x:x=ATy}
Theorem
x ∗ ∈ R n x^*\in\mathbb{R}^n x∗∈Rn is a feasible solution. P ∇ f ( x ∗ ) = 0 ⇔ x ∗ P\nabla f(x^*)=0\Leftrightarrow x^* P∇f(x∗)=0⇔x∗ satisfies the Lagrange’s condition.
Projection
x k + 1 = π [ x k − α k ∇ f ( x k ) ] x^{k+1}=\pi[x^k-\alpha^k\nabla f(x^k)] xk+1=π[xk−αk∇f(xk)]
= x k − α k P ∇ f ( x ) =x^k-\alpha^kP\nabla f(x) =xk−αkP∇f(x)
Projected steepest descent
α k = a r g m i n α > 0 f ( x k − α ∇ f ( x k ) ) \alpha^k=argmin_{\alpha>0} f(x^k-\alpha\nabla f(x^k)) αk=argminα>0f(xk−α∇f(xk))
Properties
If x 0 x^0 x0 is feasible, then ∀ k : x k \forall k: x^k ∀k:xk is feasible.
Theorem
x k x^k xk: generated by “projected steepest descent”. If P ∇ f ( x k ) ≠ 0 P\nabla f(x^k)\neq 0 P∇f(xk)=0, then f ( x k + 1 ) < f ( x k ) f(x^{k+1})<f(x^k) f(xk+1)<f(xk).
Properties
x ∗ x^* x∗ is a global minimizer of a convex function f f f over { x : A x = b } ⇔ P ∇ f ( x ∗ ) = 0 \{x:Ax=b\}\Leftrightarrow P\nabla f(x^*)=0 {x:Ax=b}⇔P∇f(x∗)=0
Lagrange’s Algorithm
min f ( x ) f(x) f(x)
s.t. h ( x ) = 0 h(x)=0 h(x)=0
h : R n → R m , l ( x , λ ) = f ( x ) + λ T h ( x ) h: \mathbb{R}^n\rightarrow \mathbb{R}^m, l(x,\lambda)=f(x)+\lambda^T h(x) h:Rn→Rm,l(x,λ)=f(x)+λTh(x)
Lagrange’s Algorithm: { x k + 1 = x k − α k ( ∇ f ( x k ) + D h ( x k ) T λ k ) λ k + 1 = λ k + β k h ( x k ) \begin{cases} x^{k+1}=x^k-\alpha^k(\nabla f(x^k)+Dh(x^k)^T\lambda^k)\\ \lambda^{k+1}=\lambda^k+\beta^k h(x^k) \end{cases} {xk+1=xk−αk(∇f(xk)+Dh(xk)Tλk)λk+1=λk+βkh(xk)
Theorem
Provided α , β \alpha,\beta α,β sufficiently small. ∃ \exist ∃ a neighborhood of ( x ∗ , λ ∗ ) (x^*,\lambda^*) (x∗,λ∗) ( ( x ∗ , λ ∗ ) ((x^*,\lambda^*) ((x∗,λ∗) satisfies ∇ f ( x ∗ ) + D h ( x ∗ ) T λ ∗ = 0 , L ( x ∗ , λ ∗ ) ≥ 0 ) \nabla f(x^*)+Dh(x^*)^T\lambda^*=0,L(x^*,\lambda^*)\geq 0) ∇f(x∗)+Dh(x∗)Tλ∗=0,L(x∗,λ∗)≥0) such that if ( x ∗ , λ ∗ ) (x^*,\lambda^*) (x∗,λ∗) is in this neighborhood, the algorithm converges to ( x ∗ , λ ∗ ) (x^*,\lambda^*) (x∗,λ∗) with at least a linear order.
min f ( x ) f(x) f(x)
s.t. g ( x ) ≤ 0 g(x)\leq 0 g(x)≤0
l ( x , μ ) = f ( x ) + μ T g ( x ) l(x,\mu)=f(x)+\mu^T g(x) l(x,μ)=f(x)+μTg(x)
x k + 1 = x k − α k ( ∇ f ( x k ) + D g ( x k ) T μ k ) x^{k+1}=x^k-\alpha^k(\nabla f(x^k)+Dg(x^k)^T\mu^k) xk+1=xk−αk(∇f(xk)+Dg(xk)Tμk)
μ k + 1 = [ μ k + β k g ( x k ) ] + = m a x { μ k + β k g ( x k ) , 0 } \mu^{k+1}=[\mu^k+\beta^kg(x^k)]_+=max\{\mu^k+\beta^kg(x^k),0\} μk+1=[μk+βkg(xk)]+=max{μk+βkg(xk),0}
Theorem
( x ∗ , μ ∗ ) (x^*,\mu^*) (x∗,μ∗) satisfies the KKT-conditions. L ( x ∗ , μ ) ≥ 0 L(x^*,\mu)\geq 0 L(x∗,μ)≥0. Provided α , β \alpha,\beta α,β sufficiently small, ∃ \exist ∃ a neighborhood, then the algorithm converges to ( x ∗ , μ ∗ ) (x^*,\mu^*) (x∗,μ∗) with at least a linear order.
Penalty Function
min f ( x ) f(x) f(x)
s.t. x ∈ Ω x\in\Omega x∈Ω
⇒ \Rightarrow ⇒ min f ( x ) + r P ( x ) f(x)+rP(x) f(x)+rP(x)
r ∈ R + : r\in \mathbb{R}^+: r∈R+: penalty parameter.
P ( x ) : R n → R P(x):\mathbb{R}^n\rightarrow \mathbb{R} P(x):Rn→R: penalty function
Definition
P P P is a penalty function, if
(1) P P P is continuous
(2) P ( x ) ≥ 0 , ∀ x ∈ R n P(x)\geq 0,\forall x\in\mathbb{R}^n P(x)≥0,∀x∈Rn
(3) P ( x ) = 0 ⇔ x ∈ Ω P(x)=0\Leftrightarrow x\in\Omega P(x)=0⇔x∈Ω
min f ( x ) f(x) f(x)
s.t. g i ( x ) ≤ 0 g_i(x)\leq 0 gi(x)≤0
⇒ p ( x ) = ∑ i g i + ( x ) \Rightarrow p(x)=\sum\limits_i g_i^+(x) ⇒p(x)=i∑gi+(x)
where g i + ( x ) = m a x { 0 , g i ( x ) } g_i^+(x)=max\{0,g_i(x)\} gi+(x)=max{0,gi(x)}
Example
g 1 ( x ) = x − 2 g_1(x)=x-2 g1(x)=x−2
g 2 ( x ) = − ( x + 1 ) 3 g_2(x)=-(x+1)^3 g2(x)=−(x+1)3
g 1 + ( x ) = { 0 , x ≤ 2 x − 2 , otherwise g_1^+(x)=\begin{cases} 0,x\leq 2\\ x-2,\text{otherwise} \end{cases} g1+(x)={0,x≤2x−2,otherwise
g 2 + ( x ) = { 0 , x ≥ − 1 − ( x + 1 ) 3 , otherwise g_2^+(x)=\begin{cases} 0,x\geq -1\\ -(x+1)^3,\text{otherwise} \end{cases} g2+(x)={0,x≥−1−(x+1)3,otherwise
P ( x ) = { x − 2 , x > 2 0 , − 1 ≤ x ≤ 2 − ( x + 1 ) 3 , x < − 1 P(x)=\begin{cases} x-2,x>2\\ 0,-1\leq x \leq 2\\ -(x+1)^3,x<-1 \end{cases} P(x)=⎩ ⎨ ⎧x−2,x>20,−1≤x≤2−(x+1)3,x<−1
Def: Courant-Beltrami-Penalty: P ( x ) = ∑ i = 1 p ( g i + ( x ) ) 2 P(x)=\sum_{i=1}^p (g_i^+(x))^2 P(x)=∑i=1p(gi+(x))2
Multi-objective Optimization
min f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋯ f l ( x ) ] f(x)=\begin{bmatrix} f_1(x)\\ f_2(x)\\ \cdots \\ f_l(x) \end{bmatrix} f(x)= f1(x)f2(x)⋯fl(x)
s.t. x ∈ Ω x\in\Omega x∈Ω
Pareto-optimal
Pareto-optimal: x ∗ ∈ Ω x^*\in\Omega x∗∈Ω. If ∄ x ∈ Ω \not \exist x\in\Omega ∃x∈Ω s.t. for i = 1 , ⋯ , l : f i ( x ) ≤ f i ( x ∗ ) i=1,\cdots,l:f_i(x)\leq f_i(x^*) i=1,⋯,l:fi(x)≤fi(x∗) and ∃ i : f i ( x ) ≤ f i ( x ∗ ) \exist i:f_i(x)\leq f_i(x^*) ∃i:fi(x)≤fi(x∗)
Multi to Single
①Weighted sum: f ( x ) = ∑ w i f i ( x ) f(x)=\sum w_i f_i(x) f(x)=∑wifi(x)
②MiniMax: f ( x ) = max i { f i ( x ) } f(x)=\max\limits_i\{f_i(x)\} f(x)=imax{fi(x)}
③p-norm: f ( x ) = ∣ ∣ f i ( x ) ∣ ∣ p = f 1 p ( x ) + ⋯ + f l p ( x ) f(x)=||f_i(x)||_p=f_1^p(x)+\cdots+f_l^p(x) f(x)=∣∣fi(x)∣∣p=f1p(x)+⋯+flp(x)
④satisfactory: min f 1 ( x ) f_1(x) f1(x)
s.t. f 2 ( x ) ≤ b 2 , ⋯ , f l ( x ) ≤ b l f_2(x)\leq b_2,\cdots,f_l(x)\leq b_l f2(x)≤b2,⋯,fl(x)≤bl
总结
这节课主要介绍了约束优化问题的算法,分为投影法和惩罚函数法。在投影法中,为了解决迭代方法中难以求得满足限制条件的最小值问题,引入了正交投影算子。在惩罚函数法中,引入了惩罚函数,对落在约束区域外的点进行惩罚。最后简单介绍了多目标优化问题。多目标优化问题较难,现有的理论较少,只简单介绍了帕累托最优,以及将多目标优化问题转换成单目标优化问题的几种方法。至此,优化理论与优化方法的内容就全部结束啦。
课程考察重点
FONC,SONC,SOSC的应用。
Gradient method, Newton method, Conjugate method等优化方法的应用。
单纯形法,拉格朗日条件,KKT条件。
纯应用,没有证明。五道大题。
重点考察对方法是否熟悉,侧重过程,不侧重计算。
这篇关于高级优化理论与方法(十五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!